TY - JOUR
T1 - Urine 5MedC, a marker of DNA methylation, in the progression of chronic kidney disease
AU - Onishi, Akifumi
AU - Sugiyama, Hitoshi
AU - Kitagawa, Masashi
AU - Yamanari, Toshio
AU - Tanaka, Keiko
AU - Ogawa-Akiyama, Ayu
AU - Kano, Yuzuki
AU - Mise, Koki
AU - Tanabe, Katsuyuki
AU - Morinaga, Hiroshi
AU - Kinomura, Masaru
AU - Uchida, Haruhito A.
AU - Wada, Jun
N1 - Funding Information:
Jun Wada takes honoraria as a speaker from Daiichi Sankyo, MSD, Tanabe Mitsubishi, and Taisho Toyama and receives support from a grant from Baxter, Dainippon Sumitomo, Ono, and Teijin Pharma. Haruhito A. Uchida belongs to the Department of Chronic Kidney Disease and Cardiovascular Disease which is supported by Chugai Pharmaceutical, MSD, Boehringer Ingelheim, and Kawanishi Holdings. The other authors declare that they have no competing interests.
Funding Information:
We sincerely thank all of the participating patients, collaborating physicians, and other medical staff in our department for their contributions. A part of this work was supported by JSPS KAKENHI Grant Numbers JP16K09616 and 19K08679 to HS.
Publisher Copyright:
Copyright © 2019 Akifumi Onishi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
PY - 2019
Y1 - 2019
N2 - Background. Alterations in DNA methylation may be involved in disease progression in patients with chronic kidney disease (CKD). Recent studies have suggested that 5-methyl-2′-deoxycytidine (5MedC) may be a marker of hypermethylation of DNA. Currently, there is no information available regarding the urine levels of 5MedC and its association with the progression of CKD. Method. We examined the urine levels of 5MedC in spot urine samples from 308 patients with CKD (median age: 56 years, male: 53.2%, and glomerulonephritis: 51.0%) using a competitive enzyme-linked immunosorbent assay and investigated the relationships among urine 5MedC, urine albumin, urine α1-microglobulin (α1MG), and the laboratory parameters associated with CKD. The patients were followed for three years to evaluate renal endpoints in a prospective manner. Results. The urine 5MedC level was significantly increased in the later stages of CKD compared to the early to middle stages of CKD. In multiple logistic regression models, urine 5MedC was significantly associated with the prediction of later CKD stages. Urine 5MedC (median value, 65.9 μmol/gCr) was significantly able to predict a 30% decline in the estimated GFR or a development of end-stage renal disease when combined with macroalbuminuria or an increased level of urine α1MG (median value, 5.7 mg/gCr). Conclusion. The present data demonstrate that the urine 5MedC level is associated with a reduced renal function and can serve as a novel and potent biomarker for predicting the renal outcome in CKD patients. Further studies will be necessary to elucidate the role of urine DNA methylation in the progression of CKD.
AB - Background. Alterations in DNA methylation may be involved in disease progression in patients with chronic kidney disease (CKD). Recent studies have suggested that 5-methyl-2′-deoxycytidine (5MedC) may be a marker of hypermethylation of DNA. Currently, there is no information available regarding the urine levels of 5MedC and its association with the progression of CKD. Method. We examined the urine levels of 5MedC in spot urine samples from 308 patients with CKD (median age: 56 years, male: 53.2%, and glomerulonephritis: 51.0%) using a competitive enzyme-linked immunosorbent assay and investigated the relationships among urine 5MedC, urine albumin, urine α1-microglobulin (α1MG), and the laboratory parameters associated with CKD. The patients were followed for three years to evaluate renal endpoints in a prospective manner. Results. The urine 5MedC level was significantly increased in the later stages of CKD compared to the early to middle stages of CKD. In multiple logistic regression models, urine 5MedC was significantly associated with the prediction of later CKD stages. Urine 5MedC (median value, 65.9 μmol/gCr) was significantly able to predict a 30% decline in the estimated GFR or a development of end-stage renal disease when combined with macroalbuminuria or an increased level of urine α1MG (median value, 5.7 mg/gCr). Conclusion. The present data demonstrate that the urine 5MedC level is associated with a reduced renal function and can serve as a novel and potent biomarker for predicting the renal outcome in CKD patients. Further studies will be necessary to elucidate the role of urine DNA methylation in the progression of CKD.
UR - http://www.scopus.com/inward/record.url?scp=85069777346&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85069777346&partnerID=8YFLogxK
U2 - 10.1155/2019/5432453
DO - 10.1155/2019/5432453
M3 - Article
C2 - 31354889
AN - SCOPUS:85069777346
SN - 0278-0240
VL - 2019
JO - Disease Markers
JF - Disease Markers
M1 - 5432453
ER -