抄録
Mutations in presenilin genes account for the majority of the cases of the familial form of Alzheimer's disease (FAD). Presenilin is essential for γ-secretase activity, a proteolytic activity involved in intramembrane cleavage of Notch and β-amyloid precursor protein (βAPP). Cleavage of βAPP by FAD mutant presenilin results in the overproduction of highly amyloidogenic amyloid β42 peptides. γ-Secretase activity requires the formation of a stable, high-molecular-mass protein complex that, in addition to the endoproteolysed fragmented form of presenilin, contains essential cofactors including nicastrin, APH-1 (refs 15-18) and PEN-2 (refs 16, 19). However, the role of each protein in complex formation and the generation of enzymatic activity is unclear. Here we show that Drosophila APH-1 (Aph-1) increases the stability of Drosophila presenilin (Psn) holoprotein in the complex. Depletion of PEN-2 by RNA interference prevents endoproteolysis of presenilin and promotes stabilization of the holoprotein in both Drosophila and mammalian cells, including primary neurons. Co-expression of Drosophila Pen-2 with Aph-1 and nicastrin increases the formation of Psn fragments as well as γ-secretase activity. Thus, APH-1 stabilizes the presenilin holoprotein in the complex, whereas PEN-2 is required for endoproteolytic processing of presenilin and conferring γ-secretase activity to the complex.
本文言語 | English |
---|---|
ページ(範囲) | 438-441 |
ページ数 | 4 |
ジャーナル | Nature |
巻 | 422 |
号 | 6930 |
DOI | |
出版ステータス | Published - 3月 27 2003 |
外部発表 | はい |
ASJC Scopus subject areas
- 一般