Stein's method for invariant measures of diffusions via Malliavin calculus

Seiichiro Kusuoka, Ciprian A. Tudor

    研究成果査読

    24 被引用数 (Scopus)

    抄録

    Given a random variable F regular enough in the sense of the Malliavin calculus, we are able to measure the distance between its law and any probability measure with a density function which is continuous, bounded, strictly positive on an interval in the real line and admits finite variance. The bounds are given in terms of the Malliavin derivative of F. Our approach is based on the theory of It diffusions and the stochastic calculus of variations. Several examples are considered in order to illustrate our general results.

    本文言語English
    ページ(範囲)1627-1651
    ページ数25
    ジャーナルStochastic Processes and their Applications
    122
    4
    DOI
    出版ステータスPublished - 4月 2012

    ASJC Scopus subject areas

    • 統計学および確率
    • モデリングとシミュレーション
    • 応用数学

    フィンガープリント

    「Stein's method for invariant measures of diffusions via Malliavin calculus」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル