Selective stimulation of VEGFR2 accelerates progressive renal disease

Waichi Sato, Katsuyuki Tanabe, Tomoki Kosugi, Kelly Hudkins, Miguel A. Lanaspa, Li Zhang, Martha Campbell-Thompson, Qiuhong Li, David A. Long, Charles E. Alpers, Takahiko Nakagawa


25 被引用数 (Scopus)


Vascular endothelial growth factor A (VEGF-A) can play both beneficial and deleterious roles in renal diseases, where its specific function might be determined by nitric oxide bioavailability. The complexity of VEGF-A in renal disease could in part be accounted for by the distinct roles of its two receptors; VEGFR1 is involved in the inflammatory responses, whereas VEGFR2 predominantly mediates angiogenesis. Because nondiabetic chronic renal disease is associated with capillary loss, we hypothesized that selective stimulation of VEGFR2 could be beneficial in this setting. However, VEGFR2 activation may be deleterious in the presence of nitric oxide deficiency. We systematically overexpressed a mutant form of VEGF-A binding only VEGFR2 (Flk-sel) using an adeno-associated virus-1 vector in wild-type and eNOS knockout mice and then induced renal injury by uninephrectomy. Flk-sel treatment increased angiogenesis and lowered blood pressure in both mouse types. Flk-sel overexpression caused mesangial injury with increased proliferation associated with elevated expression of PDGF, PDGF-β receptor, and VEGFR2; this effect was greater in eNOS knockout than in wild-type mice. Flk-sel also induced tubulointerstitial injury, with some tubular epithelial cells expressing α-smooth muscle actin, indicating a phenotypic evolution toward myofibroblasts. In conclusion, prestimulation of VEGFR2 can potentiate subsequent renal injury in mice, an effect enhanced in the setting of nitric oxide deficiency.

ジャーナルAmerican Journal of Pathology
出版ステータスPublished - 7月 2011

ASJC Scopus subject areas

  • 病理学および法医学


「Selective stimulation of VEGFR2 accelerates progressive renal disease」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。