RFX1-mediated CCN3 induction that may support chondrocyte survival under starved conditions

Tomomi Mizukawa, Takashi Nishida, Sho Akashi, Kazumi Kawata, Sumire Kikuchi, Harumi Kawaki, Masaharu Takigawa, Hiroshi Kamioka, Satoshi Kubota

研究成果査読

6 被引用数 (Scopus)

抄録

Cellular communication network factor (CCN) family members are multifunctional matricellular proteins that manipulate and integrate extracellular signals. In our previous studies investigating the role of CCN family members in cellular metabolism, we found three members that might be under the regulation of energy metabolism. In this study, we confirmed that CCN2 and CCN3 are the only members that are tightly regulated by glycolysis in human chondrocytic cells. Interestingly, CCN3 was induced under a variety of impaired glycolytic conditions. This CCN3 induction was also observed in two breast cancer cell lines with a distinct phenotype, suggesting a basic role of CCN3 in cellular metabolism. Reporter gene assays indicated a transcriptional regulation mediated by an enhancer in the proximal promoter region. As a result of analyses in silico, we specified regulatory factor binding to the X-box 1 (RFX1) as a candidate that mediated the transcriptional activation by impaired glycolysis. Indeed, the inhibition of glycolysis induced the expression of RFX1, and RFX1 silencing nullified the CCN3 induction by impaired glycolysis. Subsequent experiments with an anti-CCN3 antibody indicated that CCN3 supported the survival of chondrocytes under impaired glycolysis. Consistent with these findings in vitro, abundant CCN3 production by chondrocytes in the deep zones of developing epiphysial cartilage, which are located far away from the synovial fluid, was confirmed in vivo. Our present study uncovered that RFX1 is the mediator that enables CCN3 induction upon cellular starvation, which may eventually assist chondrocytes in retaining their viability, even when there is an energy supply shortage.

本文言語English
ページ(範囲)6884-6896
ページ数13
ジャーナルJournal of cellular physiology
236
10
DOI
出版ステータスPublished - 10月 2021

ASJC Scopus subject areas

  • 生理学
  • 臨床生化学
  • 細胞生物学

フィンガープリント

「RFX1-mediated CCN3 induction that may support chondrocyte survival under starved conditions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル