Real-time nonlinear FEM with neural network for simulating soft organ model deformation

Ken'Ichi Morooka, Xian Chen, Ryo Kurazume, Seiichi Uchida, Kenji Hara, Yumi Iwashita, Makoto Hashizume

研究成果

26 被引用数 (Scopus)

抄録

This paper presents a new method for simulating the deformation of organ models by using a neural network. The proposed method is based on the idea proposed by Chen et al. [2] that a deformed model can be estimated from the superposition of basic deformation modes. The neural network finds a relationship between external forces and the models deformed by the forces. The experimental results show that the trained network can achieve a real-time simulation while keeping the acceptable accuracy compared with the nonlinear FEM computation.

本文言語English
ホスト出版物のタイトルMedical Image Computing and Computer-Assisted Intervention - MICCAI 2008 - 11th International Conference, Proceedings
出版社Springer Verlag
ページ742-749
ページ数8
PART 2
ISBN(印刷版)3540859896, 9783540859895
DOI
出版ステータスPublished - 2008
外部発表はい
イベント11th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2008 - New York, NY
継続期間: 9月 6 20089月 10 2008

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
番号PART 2
5242 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference11th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2008
国/地域United States
CityNew York, NY
Period9/6/089/10/08

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Real-time nonlinear FEM with neural network for simulating soft organ model deformation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル