On a free boundary problem for a reaction–diffusion–advection logistic model in heterogeneous environment

Harunori Monobe, Chang Hong Wu

研究成果査読

16 被引用数 (Scopus)

抄録

In this paper, we investigate a reaction–diffusion–advection equation with a free boundary which models the spreading of an invasive species in one-dimensional heterogeneous environments. We assume that the species has a tendency to move upward along the resource gradient in addition to random dispersal, and the spreading mechanism of species is determined by a Stefan-type condition. Investigating the sign of the principal eigenvalue of the associated linearized eigenvalue problem, under certain conditions we obtain the sharp criteria for spreading and vanishing via system parameters. Also, we establish the long-time behavior of the solution and the asymptotic spreading speed. Finally, some biological implications are discussed.

本文言語English
ページ(範囲)6144-6177
ページ数34
ジャーナルJournal of Differential Equations
261
11
DOI
出版ステータスPublished - 12月 5 2016
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「On a free boundary problem for a reaction–diffusion–advection logistic model in heterogeneous environment」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル