TY - JOUR
T1 - Nitrogen recycling in subducted mantle rocks and implications for the global nitrogen cycle
AU - Halama, Ralf
AU - Bebout, Gray E.
AU - John, Timm
AU - Scambelluri, Marco
N1 - Publisher Copyright:
© 2012, Springer-Verlag.
PY - 2014/9/25
Y1 - 2014/9/25
N2 - The nitrogen concentrations [N] and isotopic compositions of ultramafic mantle rocks that represent various dehydration stages and metamorphic conditions during the subduction cycle were investigated to assess the role of such rocks in deep-Earth N cycling. The samples analyzed record low-grade serpentinization on the seafloor and/or in the forearc wedge (low-grade serpentinites from Monte Nero/Italy and Erro Tobbio/Italy) and two successive stages of metamorphic dehydration at increasing pressures and temperatures (high-pressure (HP) serpentinites from Erro Tobbio/Italy and chlorite harzburgites from Cerro del Almirez/Spain) to allow for the determination of dehydration effects in ultramafic rocks on the N budget. In low-grade serpentinites, δ15Nair values (−3.8 to +3.5 ‰) and [N] (1.3–4.5 μg/g) are elevated compared to the pristine depleted MORB mantle (δ15Nair ~ −5 ‰, [N] = 0.27 ± 0.16 μg/g), indicating input from sedimentary organic sources, at the outer rise during slab bending and/or in the forearc mantle wedge during hydration by slab-derived fluids. Both HP serpentinites and chlorite harzburgites have δ15Nair values and [N] overlapping with low-grade serpentinites, indicating no significant loss of N during metamorphic dehydration and retention of N to depths of 60–70 km. The best estimate for the δ15Nair of ultramafic rocks recycled into the mantle is +3 ± 2 ‰. The global N subduction input flux in serpentinized oceanic mantle rocks was calculated as 2.3 × 108 mol N2/year, assuming a thickness of serpentinized slab mantle of 500 m. This is at least one order of magnitude smaller than the N fluxes calculated for sediments and altered oceanic crust. Calculated global input fluxes for a range of representative subducting sections of unmetamorphosed and HP-metamorphosed slabs, all incorporating serpentinized slab mantle, range from 1.1 × 1010 to 3.9 × 1010 mol N2/year. The best estimate for the δ15Nair of the subducting slab is +4 ± 1 ‰, supporting models that invoke recycling of subducted N in mantle plumes and consistent with general models for the volatile evolution on Earth. Estimates of the efficiency of arc return of subducted N are complicated further by the possibility that mantle wedge hydrated in forearcs, then dragged to beneath volcanic fronts, is capable of conveying significant amounts of N to subarc depths.
AB - The nitrogen concentrations [N] and isotopic compositions of ultramafic mantle rocks that represent various dehydration stages and metamorphic conditions during the subduction cycle were investigated to assess the role of such rocks in deep-Earth N cycling. The samples analyzed record low-grade serpentinization on the seafloor and/or in the forearc wedge (low-grade serpentinites from Monte Nero/Italy and Erro Tobbio/Italy) and two successive stages of metamorphic dehydration at increasing pressures and temperatures (high-pressure (HP) serpentinites from Erro Tobbio/Italy and chlorite harzburgites from Cerro del Almirez/Spain) to allow for the determination of dehydration effects in ultramafic rocks on the N budget. In low-grade serpentinites, δ15Nair values (−3.8 to +3.5 ‰) and [N] (1.3–4.5 μg/g) are elevated compared to the pristine depleted MORB mantle (δ15Nair ~ −5 ‰, [N] = 0.27 ± 0.16 μg/g), indicating input from sedimentary organic sources, at the outer rise during slab bending and/or in the forearc mantle wedge during hydration by slab-derived fluids. Both HP serpentinites and chlorite harzburgites have δ15Nair values and [N] overlapping with low-grade serpentinites, indicating no significant loss of N during metamorphic dehydration and retention of N to depths of 60–70 km. The best estimate for the δ15Nair of ultramafic rocks recycled into the mantle is +3 ± 2 ‰. The global N subduction input flux in serpentinized oceanic mantle rocks was calculated as 2.3 × 108 mol N2/year, assuming a thickness of serpentinized slab mantle of 500 m. This is at least one order of magnitude smaller than the N fluxes calculated for sediments and altered oceanic crust. Calculated global input fluxes for a range of representative subducting sections of unmetamorphosed and HP-metamorphosed slabs, all incorporating serpentinized slab mantle, range from 1.1 × 1010 to 3.9 × 1010 mol N2/year. The best estimate for the δ15Nair of the subducting slab is +4 ± 1 ‰, supporting models that invoke recycling of subducted N in mantle plumes and consistent with general models for the volatile evolution on Earth. Estimates of the efficiency of arc return of subducted N are complicated further by the possibility that mantle wedge hydrated in forearcs, then dragged to beneath volcanic fronts, is capable of conveying significant amounts of N to subarc depths.
KW - N isotopes
KW - Nitrogen
KW - Recycling
KW - Subduction
KW - Ultramafic rocks
UR - http://www.scopus.com/inward/record.url?scp=84908566661&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84908566661&partnerID=8YFLogxK
U2 - 10.1007/s00531-012-0782-3
DO - 10.1007/s00531-012-0782-3
M3 - Article
AN - SCOPUS:84908566661
SN - 1437-3254
VL - 103
SP - 2081
EP - 2099
JO - International Journal of Earth Sciences
JF - International Journal of Earth Sciences
IS - 7
ER -