New classes of clustering coefficient locally maximizing graphs

Tatsuya Fukami, Norikazu Takahashi

研究成果査読

5 被引用数 (Scopus)

抄録

A simple connected undirected graph G is called a clustering coefficient locally maximizing graph if its clustering coefficient is not less than that of any simple connected graph obtained from G by rewiring an edge, that is, removing an edge and adding a new edge. In this paper, we present some new classes of clustering coefficient locally maximizing graphs. We first show that any graph composed of multiple cliques with orders greater than two sharing one vertex is a clustering coefficient locally maximizing graph. We next show that any graph obtained from a tree by replacing edges with cliques with the same order other than four is a clustering coefficient locally maximizing graph. We also extend the latter result to a more general class.

本文言語English
ページ(範囲)202-213
ページ数12
ジャーナルDiscrete Applied Mathematics
162
DOI
出版ステータスPublished - 1月 10 2014

ASJC Scopus subject areas

  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「New classes of clustering coefficient locally maximizing graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル