Multi-point virtual structure constants and mirror computation of CP2-model

Masao Jinzenji, Masahide Shimizu

研究成果査読

4 被引用数 (Scopus)

抄録

In this paper, we propose a geometrical approach to mirror computation of genus 0 Gromov-Witten invariants of CP2. We use multipoint virtual structure constants, which are defined as intersection numbers of a compact moduli space of quasi-maps from CP1 to CP2 with 2 + n marked points. We conjecture that some generating functions of them produce mirror map and the others are translated into generating functions of Gromov-Witten invariants via the mirror map. We generalize this formalism to open string case. In this case, we have to introduce infinite number of deformation parameters to obtain results that agree with some known results of open Gromov-Witten invariants of CP2. We also apply multi-point virtual structure constants to compute closed and open Gromov-Witten invariants of a non-nef hypersurface in projective space. This application simplifies the computational process of generalized mirror transformation.

本文言語English
ページ(範囲)411-468
ページ数58
ジャーナルCommunications in Number Theory and Physics
7
3
DOI
出版ステータスPublished - 2013
外部発表はい

ASJC Scopus subject areas

  • 代数と数論
  • 数理物理学
  • 物理学および天文学(全般)

フィンガープリント

「Multi-point virtual structure constants and mirror computation of CP2-model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル