TY - GEN
T1 - Low alkaline cement used in the construction of a gallery in the Horonobe Underground Research Laboratory
AU - Nakayama, Masashi
AU - Sato, Haruo
AU - Sugita, Yutaka
AU - Ito, Seiji
AU - Minamide, Masashi
AU - Kitagawa, Yoshito
PY - 2010
Y1 - 2010
N2 - In Japan, any high level radioactive waste (HLW) repository is to be constructed at over 300 m depth below surface. Tunnel support is used for safety during the construction and operation, and shotcrete and concrete lining are used as the tunnel support. Concrete is a composite material comprised of aggregate, cement and various admixtures. Low alkaline cement has been developed for the long term stability of the barrier systems whose performance could be negatively affected by highly alkaline conditions arising due to cement used in a repository. Japan Atomic Energy Agency (JAEA) has developed a low alkaline cement, named as HFSC (Highly Fly-ash Contained Silicafume Cement), containing over 60 wt% of silica-fume (SF) and fly-ash (FA). HFSC was used experimentally as the shotcrete material in construction of part of the 140m deep gallery in the Horonobe Underground Research Laboratory (URL). The objective of this experiment was to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on. HFSC used in this experiment is composed of 40 wt% OPC (Ordinary Portland Cement), 20 wt% SF, and 40 wt% FA. This composition was determined based on mechanical testing of various mixes of the above components. Because of the low OPC content, the strength of HFSC tends to be lower than that of OPC. The total length of tunnel using HFSC shotcrete is about 73 m and about 500 m3 of HFSC was used. The workability of HFSC shotcrete was confirmed in this experimental construction.
AB - In Japan, any high level radioactive waste (HLW) repository is to be constructed at over 300 m depth below surface. Tunnel support is used for safety during the construction and operation, and shotcrete and concrete lining are used as the tunnel support. Concrete is a composite material comprised of aggregate, cement and various admixtures. Low alkaline cement has been developed for the long term stability of the barrier systems whose performance could be negatively affected by highly alkaline conditions arising due to cement used in a repository. Japan Atomic Energy Agency (JAEA) has developed a low alkaline cement, named as HFSC (Highly Fly-ash Contained Silicafume Cement), containing over 60 wt% of silica-fume (SF) and fly-ash (FA). HFSC was used experimentally as the shotcrete material in construction of part of the 140m deep gallery in the Horonobe Underground Research Laboratory (URL). The objective of this experiment was to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on. HFSC used in this experiment is composed of 40 wt% OPC (Ordinary Portland Cement), 20 wt% SF, and 40 wt% FA. This composition was determined based on mechanical testing of various mixes of the above components. Because of the low OPC content, the strength of HFSC tends to be lower than that of OPC. The total length of tunnel using HFSC shotcrete is about 73 m and about 500 m3 of HFSC was used. The workability of HFSC shotcrete was confirmed in this experimental construction.
KW - HLW
KW - Horonobe URL project
KW - In-situ construction
KW - Low alkaline cement
UR - http://www.scopus.com/inward/record.url?scp=80055064507&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80055064507&partnerID=8YFLogxK
U2 - 10.1115/ICEM2010-40038
DO - 10.1115/ICEM2010-40038
M3 - Conference contribution
AN - SCOPUS:80055064507
SN - 9780791854532
T3 - Proceedings of the International Conference on Radioactive Waste Management and Environmental Remediation, ICEM
SP - 51
EP - 56
BT - ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management, ICEM2010
T2 - ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management, ICEM2010
Y2 - 3 October 2010 through 7 October 2010
ER -