Green-sensitive, long-lived, step-functional anion channelrhodopsin-2 variant as a high-potential neural silencing tool

Keiichi Kojima, Natsuki Miyoshi, Atsushi Shibukawa, Srikanta Chowdhury, Masaki Tsujimura, Tomoyasu Noji, Hiroshi Ishikita, Akihiro Yamanaka, Yuki Sudo

研究成果査読

10 被引用数 (Scopus)

抄録

Anion channelrhodopsin-2 (GtACR2) was identified from the alga Guillardia theta as a light-gated anion channel, providing a powerful neural silencing tool for optogenetics. To expand its molecular properties, we produced here GtACR2 variants by strategic mutations on the four residues around the retinal chromophore (i.e., R129, G152, P204, and C233). After the screening with the Escherichia coli expression system, we estimated spectral sensitivities and the anion channeling function by using the HEK293 expression system. Among the mutants, triple (R129M/G152S/C233A) and quadruple (R129M/G152S/P204T/C233A) mutants showed the significantly red-shifted absorption maxima (λmax = 498 and 514 nm, respectively) and the long-lived channel-conducting states (the half-life times were 3.4 and 5.4 s, respectively). In addition, both mutants can be activated and inactivated by different wavelengths, representing their step-functional ability. We nicknamed the quadruple mutant "GLaS-ACR2"from its green-sensitive, long-lived, step-functional properties. The unique characteristics of GLaS-ACR2 suggest its high potential as a neural silencing tool.

本文言語English
ページ(範囲)6214-6218
ページ数5
ジャーナルJournal of Physical Chemistry Letters
11
15
DOI
出版ステータスPublished - 8月 6 2020

ASJC Scopus subject areas

  • 材料科学(全般)
  • 物理化学および理論化学

フィンガープリント

「Green-sensitive, long-lived, step-functional anion channelrhodopsin-2 variant as a high-potential neural silencing tool」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル