抄録
Background: Recent advances in tissue regeneration approaches including 3D organoids, were based on various 3D organogenesis models. However, 3D models are generally technique-sensitive and time-consuming. Thus, we utilized an existing model of submandibular salivary gland (SMG) to modify a simple and highly reproducible in vitro 3D culture model of primary SMG cells self-organization into a well-developed cell spheroid inside Matrigel substrate. We used this model to observe the collective multicellular behavior during spheroid formation. Further, we applied various quantitative approaches including real-time live imaging and immune histochemical image analysis to dissect the cellular dynamics during tissue patterning. Results: On a time-scale of hours, we observed marked size and shape transformations in the developed 3D spheroid which resulted in a spatially-controlled growth differential from the canter to the periphery of the formed aggregates. Moreover, we investigated the effect of fibronectin (FN) on SMG cells self-organization using our simplified culture model. Interestingly, we discovered a novel role of FN in inducing duct-like elongation during initial stages of SMG bud formation. Conclusion: This in vitro model provides an excellent tool for analyzing the intercellular dynamics during early SMG tissue development as well as revealing a novel role of FN in SMG ductal expansion.
本文言語 | English |
---|---|
ページ(範囲) | 813-825 |
ページ数 | 13 |
ジャーナル | Developmental Dynamics |
巻 | 248 |
号 | 9 |
DOI | |
出版ステータス | Published - 9月 1 2019 |
ASJC Scopus subject areas
- 発生生物学