Extended association rule mining with correlation functions

Hidekazu Saito, Akito Monden, Zeynep Yucel

研究成果

3 被引用数 (Scopus)

抄録

This paper proposes extended association rule mining that can deal with correlation functions. The extended association rule is expressed in the form of: A →Correl(X, Y ) where Correl(X, Y ) is a correlation function with two variables X and Y. By this extension, data analysts can discover the condition A that lead to low (or high) correlation between two given variables from a large dataset. In order to show the efficacy of the proposed method, a case study is performed on an industry dataset of software developments, assuming the scenario of discovering a condition, where software development effort is predictable (or unpredictable) from the size of the project, i.e. there exists a significantly high (or low) correlation between size and effort. Since such a condition cannot be obtained by conventional association rule mining, we confirm the efficiency of the proposed extended association rule mining.

本文言語English
ホスト出版物のタイトルProceedings - 2018 IEEE/ACIS 3rd International Conference on Big Data, Cloud Computing, Data Science and Engineering, BCD 2018
出版社Institute of Electrical and Electronics Engineers Inc.
ページ79-84
ページ数6
ISBN(電子版)9781538656051
DOI
出版ステータスPublished - 11月 9 2018
イベント3rd IEEE/ACIS International Conference on Big Data, Cloud Computing, Data Science and Engineering, BCD 2018 - Yonago
継続期間: 7月 10 20187月 12 2018

出版物シリーズ

名前Proceedings - 2018 IEEE/ACIS 3rd International Conference on Big Data, Cloud Computing, Data Science and Engineering, BCD 2018

Other

Other3rd IEEE/ACIS International Conference on Big Data, Cloud Computing, Data Science and Engineering, BCD 2018
国/地域Japan
CityYonago
Period7/10/187/12/18

ASJC Scopus subject areas

  • 情報システム
  • ソフトウェア
  • コンピュータ ネットワークおよび通信
  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Extended association rule mining with correlation functions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル