Development of superconducting high gradient magnetic separation system for medical protein separation

Shuichiro Fuchino, Mitsuho Furuse, Koh Agatsuma, Yasuharu Kamioka, Tomohiro Iitsuka, Shuichi Nakamura, Hiroshi Ueda, Kazuhiro Kajikawa


9 被引用数 (Scopus)


Medical proteins such as monoclonal antibodies and immunoglobulins are important substances for the manufacture of medicines for cancer, etc. However, the conventional separation system for these medical proteins has very low separation rate and the cost is extremely high. To address these issues, we have developed a high gradient magnetic separation system for medical proteins using affinity magnetic nanobeads. Our system shows very high separation efficiency and can achieve low cost owing to its large production rate compared with conventional systems. The system consists of a 3T superconducting magnet cooled by a cryocooler, a filter made of fine magnetic metal fibers of about 30 μm in diameter with demagnetization circuit and liquid circulation pump for the solvent containing the medical proteins. Reducing the size of the system entails reduction of the cryocooler size, thereby resulting in reduced cooling capacity. Therefore, the heat load on the cryocooler has been considered carefully in the design of the cryogenic system. The calculated heat load of the 1st and 2nd stages was made to satisfy the cooling capacity of the cryocooler. As a result, a magnet temperature of 4.2 K and a thermal shield temperature of 60 K have been achieved, enabling smooth operation and good performance of the HGMS separation system.

ジャーナルIEEE Transactions on Applied Superconductivity
出版ステータスPublished - 1月 1 2014

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • 電子工学および電気工学


「Development of superconducting high gradient magnetic separation system for medical protein separation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。