TY - JOUR
T1 - Continuous renal replacement therapy
T2 - Does technique influence electrolyte and bicarbonate control?
AU - Morimatsu, H.
AU - Uchino, S.
AU - Bellomo, Rinaldo
AU - Ronco, C.
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2003/4/1
Y1 - 2003/4/1
N2 - Background and objectives: Different techniques of continuous renal replacement therapy (CRRT) might have different effects on electrolyte and acid-base control. The aim of this study was to determine whether continuous veno-venous hemodiafiltration (CVVHDF) or continuous veno-venous hemofiltration (CVVH) achieve better control of serum sodium, potassium and bicarbonate concentrations. Design: Retrospective controlled study. Setting: Two tertiary intensive care units. Patients: Critically ill patients with acute renal failure (ARF) treated with CVVHDF (n=49) or CVVH (n=50). Interventions: Retrieval of daily morning sodium and potassium values and arterial bicarbonate levels from computerized biochemical records before and after the initiation of CRRT for up to 2 weeks of treatment. Statistical comparison of findings. Measurements and results: Before treatment, abnormal (high or low) values were frequently observed for sodium (65.1% for CVVHDF vs. 80.0% for CVVH; NS), potassium (45.9% vs. 34.0%; NS), and bicarbonate (73.3% vs. 68.0%; NS). After treatment, however, CVVHDF was more likely to achieve serum sodium concentrations within the normal range (74.1% vs. 62.9%; p=0.0026). Both treatments decreased the mean serum potassium concentration over the first 48 h (p=0.0059 and p>0.0001, respectively), but there was no difference in terms of the normalization of serum potassium concentration during the entire treatment period (88.3% vs. 90.5%; NS). Both treatments increased the mean arterial bicarbonate concentration over the first 48 hours (p=0.011 and p<0.0001, respectively). However, CVVH was associated with a lower incidence of metabolic acidosis (13.8% for CVVH vs. 34.5% for CVVHDF; p<0.0001) and a higher incidence of metabolic alkalosis (38.9% vs. 1.1%; p<0.0001) during the entire treatment period. Conclusions: CRRT strategies based on different techniques have a significantly different impact on sodium and bicarbonate control.
AB - Background and objectives: Different techniques of continuous renal replacement therapy (CRRT) might have different effects on electrolyte and acid-base control. The aim of this study was to determine whether continuous veno-venous hemodiafiltration (CVVHDF) or continuous veno-venous hemofiltration (CVVH) achieve better control of serum sodium, potassium and bicarbonate concentrations. Design: Retrospective controlled study. Setting: Two tertiary intensive care units. Patients: Critically ill patients with acute renal failure (ARF) treated with CVVHDF (n=49) or CVVH (n=50). Interventions: Retrieval of daily morning sodium and potassium values and arterial bicarbonate levels from computerized biochemical records before and after the initiation of CRRT for up to 2 weeks of treatment. Statistical comparison of findings. Measurements and results: Before treatment, abnormal (high or low) values were frequently observed for sodium (65.1% for CVVHDF vs. 80.0% for CVVH; NS), potassium (45.9% vs. 34.0%; NS), and bicarbonate (73.3% vs. 68.0%; NS). After treatment, however, CVVHDF was more likely to achieve serum sodium concentrations within the normal range (74.1% vs. 62.9%; p=0.0026). Both treatments decreased the mean serum potassium concentration over the first 48 h (p=0.0059 and p>0.0001, respectively), but there was no difference in terms of the normalization of serum potassium concentration during the entire treatment period (88.3% vs. 90.5%; NS). Both treatments increased the mean arterial bicarbonate concentration over the first 48 hours (p=0.011 and p<0.0001, respectively). However, CVVH was associated with a lower incidence of metabolic acidosis (13.8% for CVVH vs. 34.5% for CVVHDF; p<0.0001) and a higher incidence of metabolic alkalosis (38.9% vs. 1.1%; p<0.0001) during the entire treatment period. Conclusions: CRRT strategies based on different techniques have a significantly different impact on sodium and bicarbonate control.
KW - Acute renal failure
KW - Bicarbonate
KW - Hemodialysis
KW - Hemofiltration
KW - Potassium
KW - Sodium
UR - http://www.scopus.com/inward/record.url?scp=0038446738&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0038446738&partnerID=8YFLogxK
U2 - 10.1177/039139880302600403
DO - 10.1177/039139880302600403
M3 - Article
C2 - 12757027
AN - SCOPUS:0038446738
SN - 0391-3988
VL - 26
SP - 289
EP - 296
JO - Life Support Systems
JF - Life Support Systems
IS - 4
ER -