抄録
Let R be a commutative noetherian local ring of prime characteristic. Denote by eR the ring R regarded as an R-algebra through e-times composition of the Frobenius map. Suppose that R is F-finite, i.e., 1R is a finitely generated R-module. We prove that R is Cohen-Macaulay if and only if the R-modules eR have finite Cohen-Macaulay dimensions for infinitely many integers e.
本文言語 | English |
---|---|
ページ(範囲) | 3177-3187 |
ページ数 | 11 |
ジャーナル | Proceedings of the American Mathematical Society |
巻 | 132 |
号 | 11 |
DOI | |
出版ステータス | Published - 11月 2004 |
ASJC Scopus subject areas
- 数学 (全般)
- 応用数学