An end-milling condition decision support system using data-mining for difficult-to-cut materials

Hiroyuki Kodama, Masatoshi Shindou, Toshiki Hirogaki, Eiichi Aoyama, Keiji Ogawa

研究成果

3 被引用数 (Scopus)

抄録

We proposed the data-mining methods using hierarchical and non-hierarchical clustering methods to help engineers decide appropriate end-milling conditions. The aim of our research is to construct a system that uses clustering techniques and tool catalog data to support the decision of end-milling conditions for difficult-to-cut materials. We used variable cluster analysis and the K-means method to find tool shape parameters that had a linear relationship with the end-milling conditions listed in the catalog. We used the response surface method and significant tool shape parameters obtained by clustering to derive end-milling condition. Milling experiments using a square end mill under two sets of end-milling conditions (conditions derived from the end-milling condition decision support system and conditions suggested by expert engineers) for difficult-to-cut materials (austenite stainless steel) showed that catalog mining can be used to derive guidelines for deciding end-milling conditions.

本文言語English
ホスト出版物のタイトルAdvances in Abrasive Technology XV
ページ472-477
ページ数6
DOI
出版ステータスPublished - 2012
外部発表はい
イベント15th International Symposium on Advances in Abrasive Technology, ISAAT 2012 -
継続期間: 9月 25 20129月 28 2012

出版物シリーズ

名前Advanced Materials Research
565
ISSN(印刷版)1022-6680

Other

Other15th International Symposium on Advances in Abrasive Technology, ISAAT 2012
国/地域Singapore
Period9/25/129/28/12

ASJC Scopus subject areas

  • 工学(全般)

フィンガープリント

「An end-milling condition decision support system using data-mining for difficult-to-cut materials」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル