Alterations in UPR Signaling by Methylmercury Trigger Neuronal Cell Death in the Mouse Brain

Ryosuke Nomura, Nobumasa Takasugi, Hideki Hiraoka, Yuta Iijima, Takao Iwawaki, Yoshito Kumagai, Masatake Fujimura, Takashi Uehara

研究成果査読

抄録

Methylmercury (MeHg), an environmental toxicant, induces neuronal cell death and injures specific areas of the brain. MeHg is known to induce oxidative and endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) pathway has a dual nature in that it regulates and protects cells from an overload of improperly folded proteins in the ER, whereas excessively stressed cells are eliminated by apoptosis. Oxidative stress/ER stress induced by methylmercury exposure may tilt the UPR toward apoptosis, but there is little in vivo evidence of a direct link to actual neuronal cell death. Here, by using the ER stress-activated indicator (ERAI) system, we investigated the time course signaling alterations of UPR in vivo in the most affected areas, the somatosensory cortex and striatum. In the ERAI-Venus transgenic mice exposed to MeHg (30 or 50 ppm in drinking water), the ERAI signal, which indicates the activation of the cytoprotective pathway of the UPR, was only transiently enhanced, whereas the apoptotic pathway of the UPR was persistently enhanced. Furthermore, detailed analysis following the time course showed that MeHg-induced apoptosis is strongly associated with alterations in UPR signaling. Our results suggest that UPR modulation could be a therapeutic target for treating neuropathy.

本文言語English
論文番号15412
ジャーナルInternational journal of molecular sciences
23
23
DOI
出版ステータスPublished - 12月 2022

ASJC Scopus subject areas

  • 触媒
  • 分子生物学
  • 分光学
  • コンピュータ サイエンスの応用
  • 物理化学および理論化学
  • 有機化学
  • 無機化学

フィンガープリント

「Alterations in UPR Signaling by Methylmercury Trigger Neuronal Cell Death in the Mouse Brain」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル