TY - JOUR
T1 - ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed
AU - Nishimura, Noriyuki
AU - Yoshida, Tomo
AU - Kitahata, Nobutaka
AU - Asami, Tadao
AU - Shinozaki, Kazuo
AU - Hirayama, Takashi
PY - 2007/6/1
Y1 - 2007/6/1
N2 - The phytohormone abscisic acid (ABA) regulates physiologically important stress and developmental responses in plants. To reveal the mechanism of response to ABA, we isolated several novel ABA-hypersensitive Arabidopsis thaliana mutants, named ahg (ABA-hypersensitive germination). ahg1-1 mutants showed hypersensitivity to ABA, NaCl, KCl, mannitol, glucose and sucrose during germination and post-germination growth, but did not display any significant phenotypes in adult plants. ahg1-1 seeds accumulated slightly more ABA before stratification and showed increased seed dormancy. Map-based cloning of AHG1 revealed that ahg1-1 has a nonsense mutation in a gene encoding a novel protein phosphatase 2C (PP2C). We previously showed that the ahg3-1 mutant has a point mutation in the AtPP2CA gene, which encodes another PP2C that has a major role in the ABA response in seeds (Yoshida et al., 2006b). The levels of AHG1 mRNA were higher in dry seeds and increased during late seed maturation - an expression pattern similar to that of ABI5. Transcriptome analysis revealed that, in ABA-treated germinating seeds, many seed-specific genes and ABA-inducible genes were highly expressed in ahg1-1 and ahg3-1 mutants compared with the wild-type. Detailed analysis suggested differences between the functions of AHG1 and AHG3. Dozens of genes were expressed more strongly in the ahg1-1 mutant than in ahg3-1. Promoter-GUS analyses demonstrated both overlapping and distinct expression patterns in seed. In addition, the ahg1-1 ahg3-1 double mutant was more hypersensitive than either monogenic mutant. These results suggest that AHG1 has specific functions in seed development and germination, shared partly with AHG3.
AB - The phytohormone abscisic acid (ABA) regulates physiologically important stress and developmental responses in plants. To reveal the mechanism of response to ABA, we isolated several novel ABA-hypersensitive Arabidopsis thaliana mutants, named ahg (ABA-hypersensitive germination). ahg1-1 mutants showed hypersensitivity to ABA, NaCl, KCl, mannitol, glucose and sucrose during germination and post-germination growth, but did not display any significant phenotypes in adult plants. ahg1-1 seeds accumulated slightly more ABA before stratification and showed increased seed dormancy. Map-based cloning of AHG1 revealed that ahg1-1 has a nonsense mutation in a gene encoding a novel protein phosphatase 2C (PP2C). We previously showed that the ahg3-1 mutant has a point mutation in the AtPP2CA gene, which encodes another PP2C that has a major role in the ABA response in seeds (Yoshida et al., 2006b). The levels of AHG1 mRNA were higher in dry seeds and increased during late seed maturation - an expression pattern similar to that of ABI5. Transcriptome analysis revealed that, in ABA-treated germinating seeds, many seed-specific genes and ABA-inducible genes were highly expressed in ahg1-1 and ahg3-1 mutants compared with the wild-type. Detailed analysis suggested differences between the functions of AHG1 and AHG3. Dozens of genes were expressed more strongly in the ahg1-1 mutant than in ahg3-1. Promoter-GUS analyses demonstrated both overlapping and distinct expression patterns in seed. In addition, the ahg1-1 ahg3-1 double mutant was more hypersensitive than either monogenic mutant. These results suggest that AHG1 has specific functions in seed development and germination, shared partly with AHG3.
KW - ABA hypersensitive mutant
KW - Arabidopsis
KW - Germination
KW - Microarray
KW - Protein phosphatase 2C
UR - http://www.scopus.com/inward/record.url?scp=34250178458&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34250178458&partnerID=8YFLogxK
U2 - 10.1111/j.1365-313X.2007.03107.x
DO - 10.1111/j.1365-313X.2007.03107.x
M3 - Article
C2 - 17461784
AN - SCOPUS:34250178458
SN - 0960-7412
VL - 50
SP - 935
EP - 949
JO - Plant Journal
JF - Plant Journal
IS - 6
ER -