TY - GEN
T1 - A stabilization procedure for soil-water coupled problems using the mesh-free method
AU - Shibata, T.
AU - Murakami, A.
PY - 2008/12/1
Y1 - 2008/12/1
N2 - The development of stability problems related to classical mixed methods has recently been observed. In this study, a soil-water coupled boundary-value problem, one type of stability problem, is presented using the Element-free Galerkin Method (EFG Method). In this soil-water coupled problem, anomalous behavior appears in the pressure field unless stabilization techniques are used. The remedy to such numerical instability has generally been to adopt a higher interpolation order for the displacements than for the pore pressure. As an alternative, however, an added stabilization term is incorporated into the equilibrium equation. The advantages of this stabilization procedure are as follows: (1) The interpolation order for the pore pressure is the same as that for the displacements. Therefore, the interpolation functions in the pore pressure field do not reduce the accuracy of the numerical results. (2) The stabilization term consists of first derivatives. The first derivatives of the interpolation functions for the EFG Method are smooth, and therefore, the solutions for pore pressure are accurate.In order to validate the above stabilization technique, some numerical results are given. It can be seen from the results that a good convergence is obtained with this stabilization term.
AB - The development of stability problems related to classical mixed methods has recently been observed. In this study, a soil-water coupled boundary-value problem, one type of stability problem, is presented using the Element-free Galerkin Method (EFG Method). In this soil-water coupled problem, anomalous behavior appears in the pressure field unless stabilization techniques are used. The remedy to such numerical instability has generally been to adopt a higher interpolation order for the displacements than for the pore pressure. As an alternative, however, an added stabilization term is incorporated into the equilibrium equation. The advantages of this stabilization procedure are as follows: (1) The interpolation order for the pore pressure is the same as that for the displacements. Therefore, the interpolation functions in the pore pressure field do not reduce the accuracy of the numerical results. (2) The stabilization term consists of first derivatives. The first derivatives of the interpolation functions for the EFG Method are smooth, and therefore, the solutions for pore pressure are accurate.In order to validate the above stabilization technique, some numerical results are given. It can be seen from the results that a good convergence is obtained with this stabilization term.
KW - Mesh-free method
KW - Soil-water coupled problem
KW - Stabilization procedure
UR - http://www.scopus.com/inward/record.url?scp=84864764286&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84864764286&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84864764286
SN - 9781622761760
T3 - 12th International Conference on Computer Methods and Advances in Geomechanics 2008
SP - 64
EP - 70
BT - 12th International Conference on Computer Methods and Advances in Geomechanics 2008
T2 - 12th International Conference on Computer Methods and Advances in Geomechanics 2008
Y2 - 1 October 2008 through 6 October 2008
ER -