A novel mechanical plant compression system for biomass fuel and acquisition of squeezed liquid with water-soluble lignin as anti-virus materials

Toshiaki Ohara, Ken Yuasa, Kentaro Kimura, Shiho Komaki, Yuta Nishina, Akihiro Matsukawa

研究成果査読

1 被引用数 (Scopus)

抄録

Plant biomass could be a viable alternative renewable resource, but the moisture content must be reduced to use it as fuel. Mechanical compression alone is generally insufficient for dehydration, necessitating the addition of thermal drying. This study develops a unique mechanical rolling compression method with high dehydration ability. The squeezed liquid was analyzed using 1H nuclear magnetic resonance (1H NMR), UV–Vis, and FT-IR indicating much water-soluble lignin. Cedar board, woody biomass, compressed more effectively than cedar chips, implying that mechanical rolling compression along vessels such as straw was important. Alpinia zerumbet, herbaceous biomass, was compressed in the same way, and the squeezed liquid contained water-soluble lignin. Pellets made from plant residues were evaluated by combustion test. The squeezed liquid with water-soluble liquid revealed a basic antiviral effect for influenza and the porcine epidemic diarrhea virus. Our developed, novel, rolling plant compression method has the potential to alter fossil fuels.

本文言語English
ジャーナルJournal of Material Cycles and Waste Management
DOI
出版ステータスAccepted/In press - 2022

ASJC Scopus subject areas

  • 廃棄物管理と処理
  • 材料力学

フィンガープリント

「A novel mechanical plant compression system for biomass fuel and acquisition of squeezed liquid with water-soluble lignin as anti-virus materials」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル