Volatilization and recovery of mercury from mercury-polluted soils and wastewaters using mercury-resistant Acidithiobacillus ferrooxidans strains SUG 2-2 and MON-1.

Fumiaki Takeuchi, Tsuyoshi Sugio

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, is one of the most important bacteria for the bioleaching of copper and gold ores. In order to use the mercury reducing activity of A. ferrooxidans for the bioremediation of mercury, mercury-resistant A. ferrooxidans strains SUG 2-2 and MON-1 were screened among 150 strains of iron-oxidizing bacteria isolated from natural environments. It was found that strains SUG 2-2 and MON-1 have a novel ferrous iron-dependent mercury volatilization activity as well as an NADPH-dependent mercury reductase activity. Strain MON-1 has an organomercurial lyase-like activity and grew most rapidly in an iron medium with 0.1 microM p-chloromercuribenzoic acid among 11 A. ferrooxidans strains tested. Nearly 100% of the total mercury in mercury-polluted soil or mercury wastewater was volatilized and recovered by incubating SUG 2-2 or MON-1 cells in 20 ml of an acidified water (pH 2.5) with ferrous iron, suggesting that these mercury-resistant strains can be used for the bioremediation of inorganic and organic mercurial compounds. We show for the first time that MON-1 cells immobilized in polyvinyl alcohol (PVA) resins could efficiently volatilize mercury from 2 L of a synthetic mercury-polluted wastewater (pH 2.5) containing 40 microM Hg(2+) and ferrous iron. The MON-1-immobilized PVA resins were used repeatedly.

Original languageEnglish
Pages (from-to)305-316
Number of pages12
JournalEnvironmental sciences : an international journal of environmental physiology and toxicology
Volume13
Issue number6
Publication statusPublished - 2006

Fingerprint

Acidithiobacillus
Volatilization
Waste Water
Mercury
Soil
Iron
Polyvinyl Alcohol
Environmental Biodegradation
Bacteria
p-Chloromercuribenzoic Acid
Immobilized Cells
NADP
Gold
Copper

ASJC Scopus subject areas

  • Medicine(all)

Cite this

@article{e7a46f214f094422a74adb842c2f4708,
title = "Volatilization and recovery of mercury from mercury-polluted soils and wastewaters using mercury-resistant Acidithiobacillus ferrooxidans strains SUG 2-2 and MON-1.",
abstract = "Iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, is one of the most important bacteria for the bioleaching of copper and gold ores. In order to use the mercury reducing activity of A. ferrooxidans for the bioremediation of mercury, mercury-resistant A. ferrooxidans strains SUG 2-2 and MON-1 were screened among 150 strains of iron-oxidizing bacteria isolated from natural environments. It was found that strains SUG 2-2 and MON-1 have a novel ferrous iron-dependent mercury volatilization activity as well as an NADPH-dependent mercury reductase activity. Strain MON-1 has an organomercurial lyase-like activity and grew most rapidly in an iron medium with 0.1 microM p-chloromercuribenzoic acid among 11 A. ferrooxidans strains tested. Nearly 100{\%} of the total mercury in mercury-polluted soil or mercury wastewater was volatilized and recovered by incubating SUG 2-2 or MON-1 cells in 20 ml of an acidified water (pH 2.5) with ferrous iron, suggesting that these mercury-resistant strains can be used for the bioremediation of inorganic and organic mercurial compounds. We show for the first time that MON-1 cells immobilized in polyvinyl alcohol (PVA) resins could efficiently volatilize mercury from 2 L of a synthetic mercury-polluted wastewater (pH 2.5) containing 40 microM Hg(2+) and ferrous iron. The MON-1-immobilized PVA resins were used repeatedly.",
author = "Fumiaki Takeuchi and Tsuyoshi Sugio",
year = "2006",
language = "English",
volume = "13",
pages = "305--316",
journal = "Environmental sciences : an international journal of environmental physiology and toxicology.",
issn = "0915-955X",
publisher = "M Y U Scientific Publishing Division",
number = "6",

}

TY - JOUR

T1 - Volatilization and recovery of mercury from mercury-polluted soils and wastewaters using mercury-resistant Acidithiobacillus ferrooxidans strains SUG 2-2 and MON-1.

AU - Takeuchi, Fumiaki

AU - Sugio, Tsuyoshi

PY - 2006

Y1 - 2006

N2 - Iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, is one of the most important bacteria for the bioleaching of copper and gold ores. In order to use the mercury reducing activity of A. ferrooxidans for the bioremediation of mercury, mercury-resistant A. ferrooxidans strains SUG 2-2 and MON-1 were screened among 150 strains of iron-oxidizing bacteria isolated from natural environments. It was found that strains SUG 2-2 and MON-1 have a novel ferrous iron-dependent mercury volatilization activity as well as an NADPH-dependent mercury reductase activity. Strain MON-1 has an organomercurial lyase-like activity and grew most rapidly in an iron medium with 0.1 microM p-chloromercuribenzoic acid among 11 A. ferrooxidans strains tested. Nearly 100% of the total mercury in mercury-polluted soil or mercury wastewater was volatilized and recovered by incubating SUG 2-2 or MON-1 cells in 20 ml of an acidified water (pH 2.5) with ferrous iron, suggesting that these mercury-resistant strains can be used for the bioremediation of inorganic and organic mercurial compounds. We show for the first time that MON-1 cells immobilized in polyvinyl alcohol (PVA) resins could efficiently volatilize mercury from 2 L of a synthetic mercury-polluted wastewater (pH 2.5) containing 40 microM Hg(2+) and ferrous iron. The MON-1-immobilized PVA resins were used repeatedly.

AB - Iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, is one of the most important bacteria for the bioleaching of copper and gold ores. In order to use the mercury reducing activity of A. ferrooxidans for the bioremediation of mercury, mercury-resistant A. ferrooxidans strains SUG 2-2 and MON-1 were screened among 150 strains of iron-oxidizing bacteria isolated from natural environments. It was found that strains SUG 2-2 and MON-1 have a novel ferrous iron-dependent mercury volatilization activity as well as an NADPH-dependent mercury reductase activity. Strain MON-1 has an organomercurial lyase-like activity and grew most rapidly in an iron medium with 0.1 microM p-chloromercuribenzoic acid among 11 A. ferrooxidans strains tested. Nearly 100% of the total mercury in mercury-polluted soil or mercury wastewater was volatilized and recovered by incubating SUG 2-2 or MON-1 cells in 20 ml of an acidified water (pH 2.5) with ferrous iron, suggesting that these mercury-resistant strains can be used for the bioremediation of inorganic and organic mercurial compounds. We show for the first time that MON-1 cells immobilized in polyvinyl alcohol (PVA) resins could efficiently volatilize mercury from 2 L of a synthetic mercury-polluted wastewater (pH 2.5) containing 40 microM Hg(2+) and ferrous iron. The MON-1-immobilized PVA resins were used repeatedly.

UR - http://www.scopus.com/inward/record.url?scp=34347377009&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34347377009&partnerID=8YFLogxK

M3 - Article

C2 - 17273146

AN - SCOPUS:34347377009

VL - 13

SP - 305

EP - 316

JO - Environmental sciences : an international journal of environmental physiology and toxicology.

JF - Environmental sciences : an international journal of environmental physiology and toxicology.

SN - 0915-955X

IS - 6

ER -