Visual servoing for underwater vehicle using dual-eyes evolutionary real-time pose tracking

Myo Myint, Kenta Yonemori, Akira Yanou, Khin Nwe Lwin, Mamoru Minami, Shintaro Ishiyama

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)


Recently, a number of researches related to underwater vehicle has been conducted worldwide with the huge demand in different applications. In this paper, we propose visual servoing for underwater vehicle using dual-eyes cameras. A new method of pose estimation scheme that is based on 3D model-based recognition is proposed for real-time pose tracking to be applied in Autonomous Underwater Vehicle (AUV). In this method, we use 3D marker as a passive target that is simple but enough rich of information. 1-step Genetic Algorithm (GA) is utilized in searching process of pose in term of optimization, because of its effectiveness, simplicity and promising performance of recursive evaluation, for real-time pose tracking performance. The proposed system is implemented as software implementation and Remotely Operated Vehicle (ROV) is used as a test-bed. In simulated experiment, the ROV recognizes the target, estimates the relative pose of vehicle with respect to the target and controls the vehicle to be regulated in desired pose. PID control concept is adapted for proper regulation function. Finally, the robustness of the proposed system is verified in the case when there is physical disturbance and in the case when the target object is partially occluded. Experiments are conducted in indoor pool. Experimental results show recognition accuracy and regulating performance with errors kept in centimeter level.

Original languageEnglish
Pages (from-to)543-558
Number of pages16
JournalJournal of Robotics and Mechatronics
Issue number4
Publication statusPublished - Aug 2016


  • Genetic algorithm
  • Model-based recognition
  • Stereo camera
  • Underwater vehicle
  • Visual servoing

ASJC Scopus subject areas

  • Computer Science(all)
  • Electrical and Electronic Engineering


Dive into the research topics of 'Visual servoing for underwater vehicle using dual-eyes evolutionary real-time pose tracking'. Together they form a unique fingerprint.

Cite this