Viscoelastic and dynamic nonlinear properties of airway smooth muscle tissue: Roles of mechanical force and the cytoskeleton

Satoru Ito, Arnab Majumdar, Hiroaki Kume, Kaoru Shimokata, Keiji Naruse, Kenneth R. Lutchen, Dimitrije Stamenović, Béla Suki

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

The viscoelastic and dynamic nonlinear properties of guinea pig tracheal smooth muscle tissues were investigated by measuring the storage (G′) and loss (G″) moduli using pseudorandom small-amplitude length oscillations between 0.12 and 3.5 Hz superimposed on static strains of either 10 or 20% of initial length. The G″ and G′ spectra were interpreted using a linear viscoelastic model incorporating damping (G) and stiffness (H), respectively. Both G and H were elevated following an increase in strain from 10 to 20%. There was no change in harmonic distortion (Kd), an index of dynamic nonlinearity, between 10 and 20% strains. Application of methacholine at 10% strain significantly increased G and H while it decreased Kd. Cytochalasin D, isoproterenol, and HA-1077, a Rho-kinase inhibitor, significantly decreased both G and H but increased Kd. Following cytochalasin D, G, H, and Kd were all elevated when mean strain increased from 10 to 20%. There were no changes in hysteresivity, G/H, under any condition. We conclude that not all aspects of the viscoelastic properties of tracheal smooth muscle strips are similar to those previously observed in cultured cells. We attribute these differences to the contribution of the extracellular matrix. Additionally, using a network model, we show that the dynamic nonlinear behavior, which has not been observed in cell culture, is associated with the state of the contractile stress and may derive from active polymerization within the cytoskeleton.

Original languageEnglish
JournalAmerican Journal of Physiology - Lung Cellular and Molecular Physiology
Volume290
Issue number6
DOIs
Publication statusPublished - Jun 2006
Externally publishedYes

    Fingerprint

Keywords

  • Asthma
  • Computational model
  • Mechanical stress
  • Mechanics
  • Stiffness

ASJC Scopus subject areas

  • Pulmonary and Respiratory Medicine
  • Cell Biology
  • Physiology

Cite this