Abstract
Transparent nanocrystallized glasses consisting of Er2Te5O13 nanocrystals (∼100 nm size) have been prepared in 10BaO·10Er2O3·80TeO2, and load/unload displacement curves at room temperature (humidity 53%) have been measured in the penetration depth of ht=200-600 nm using a Vickers nanoindentation technique. The values (4.0-9.4±0.1 GPa) of universal (dynamic) hardness (Hu) in the nanocrystallized glasses are larger than those (Hu=2.7-6.5±0.1 GPa) in the precursor glass and are slightly smaller than those (Hu=4.4-9.7±0.1 GPa) in the opaque crystallized glass consisting of Er2TeO6 crystals. The elastic recoveries during unloading are 0.53-0.61, being almost the same as those in the precursor and opaque crystallized glasses. The elastic Ue and plastic Up deformation energies at ht=500 nm in the nanocrystallized glasses are estimated to be Ue=106 and Up=91±3 kJmol-1, respectively. These values are larger than those of the precursor glass (Ue=83 and Up=57±3 kJmol-1), suggesting that the deformation energy during loading in TeO2-based glasses is largely increased due to nanocrystallization. The main origin of plastic deformation at ht<600 nm is considered to be densification.
Original language | English |
---|---|
Pages (from-to) | 407-412 |
Number of pages | 6 |
Journal | Journal of Non-Crystalline Solids |
Volume | 316 |
Issue number | 2-3 |
DOIs | |
Publication status | Published - Feb 1 2003 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Condensed Matter Physics
- Materials Chemistry