Uptake of osteoblast-derived extracellular vesicles promotes the differentiation of osteoclasts in the zebrafish scale

Jingjing Kobayashi-Sun, Shiori Yamamori, Mao Kondo, Junpei Kuroda, Mika Ikegame, Nobuo Suzuki, Kei ichiro Kitamura, Atsuhiko Hattori, Masaaki Yamaguchi, Isao Kobayashi

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Differentiation of osteoclasts (OCs) from hematopoietic cells requires cellular interaction with osteoblasts (OBs). Due to the difficulty of live-imaging in the bone, however, the cellular and molecular mechanisms underlying intercellular communication involved in OC differentiation are still elusive. Here, we develop a fracture healing model using the scale of trap:GFP; osterix:mCherry transgenic zebrafish to visualize the interaction between OCs and OBs. Transplantation assays followed by flow cytometric analysis reveal that most trap:GFPhigh OCs in the fractured scale are detected in the osterix:mCherry+ fraction because of uptake of OB-derived extracellular vesicles (EVs). In vivo live-imaging shows that immature OCs actively interact with osterix:mCherry+ OBs and engulf EVs prior to convergence at the fracture site. In vitro cell culture assays show that OB-derived EVs promote OC differentiation via Rankl signaling. Collectively, these data suggest that EV-mediated intercellular communication with OBs plays an important role in the differentiation of OCs in bone tissue.

Original languageEnglish
Article number190
JournalCommunications Biology
Volume3
Issue number1
DOIs
Publication statusPublished - Dec 1 2020

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Medicine (miscellaneous)

Fingerprint Dive into the research topics of 'Uptake of osteoblast-derived extracellular vesicles promotes the differentiation of osteoclasts in the zebrafish scale'. Together they form a unique fingerprint.

Cite this