Upregulation of Runt-Related Transcription Factor-2 Through CCAAT Enhancer Binding Protein-β Signaling Pathway in Microglial BV-2 Cells Exposed to ATP

Ryota Nakazato, Takeshi Takarada, Shinsuke Ikeno, Saki Nakamura, Takaya Kutsukake, Eiichi Hinoi, Yukio Yoneda

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

We have shown constitutive expression of the master regulator of osteoblastogenesis, runt-related transcription factor-2 (Runx2), by microglia cells outside bone. Here, we attempted to evaluate the pathological significance of Runx2 in microglial BV-2 cells exposed to ATP at a high concentration. Marked upregulation of Runx2 transcript and protein expression was seen in cells exposed to 1mM ATP for a period longer than 30min without inducing cytotoxicity. The Runx2 upregulation by ATP was prevented by extracellular and intracellular Ca2+ chelators, while thapsigargin upregulated Runx2 expression alone without affecting the upregulation by ATP. A calmodulin antagonist prevented the upregulation by ATP, with calcineurin inhibitors being ineffective. Although ATP markedly increased nuclear levels of nuclear factor of activated T cell-2 (NFAT2), Runx2 promoter activity was not simulated by the introduction of either NFAT1 or NFAT2, but facilitated by that of CCAAT enhancer binding protein-α (C/EBPα), C/EBPβ and nuclear factor (erythroid-derived 2)-like-2 (Nrf2). Exposure to ATP up-regulated C/EBPβ and Nrf2, but not C/EBPα, expression, in addition to increasing nuclear levels of respective corresponding proteins. Runx2 upregulation by ATP was deteriorated by knockdown of C/EBPβ but not by that of Nrf2, however, while exposure to ATP up-regulated matrix metalloproteinase-13 (Mmp13) expression in a Runx2-dependent manner. Overexpression of Runx2 up-regulated Mmp13 expression with promoted incorporation of fluorescent beads into BV-2 cells without ATP. These results suggest that extracellular ATP up-regulates Runx2 expression through activation of the C/EBPβ signaling in a calmodulin-dependent manner to play a pivotal role in phagocytosis in microglial BV-2 cells.

Original languageEnglish
Pages (from-to)2510-2521
Number of pages12
JournalJournal of Cellular Physiology
Volume230
Issue number10
DOIs
Publication statusPublished - Oct 1 2015
Externally publishedYes

Fingerprint

CCAAT-Enhancer-Binding Proteins
Transcription Factors
Up-Regulation
Adenosine Triphosphate
Matrix Metalloproteinase 13
NFATC Transcription Factors
Calmodulin
Core Binding Factor Alpha 1 Subunit
Thapsigargin
Microglia
Cytotoxicity
Chelating Agents
Phagocytosis
Bone
Proteins

ASJC Scopus subject areas

  • Clinical Biochemistry
  • Cell Biology
  • Physiology
  • Medicine(all)

Cite this

Upregulation of Runt-Related Transcription Factor-2 Through CCAAT Enhancer Binding Protein-β Signaling Pathway in Microglial BV-2 Cells Exposed to ATP. / Nakazato, Ryota; Takarada, Takeshi; Ikeno, Shinsuke; Nakamura, Saki; Kutsukake, Takaya; Hinoi, Eiichi; Yoneda, Yukio.

In: Journal of Cellular Physiology, Vol. 230, No. 10, 01.10.2015, p. 2510-2521.

Research output: Contribution to journalArticle

Nakazato, Ryota ; Takarada, Takeshi ; Ikeno, Shinsuke ; Nakamura, Saki ; Kutsukake, Takaya ; Hinoi, Eiichi ; Yoneda, Yukio. / Upregulation of Runt-Related Transcription Factor-2 Through CCAAT Enhancer Binding Protein-β Signaling Pathway in Microglial BV-2 Cells Exposed to ATP. In: Journal of Cellular Physiology. 2015 ; Vol. 230, No. 10. pp. 2510-2521.
@article{bf91f6d7ddcc41caaa445ac6a3d38bc4,
title = "Upregulation of Runt-Related Transcription Factor-2 Through CCAAT Enhancer Binding Protein-β Signaling Pathway in Microglial BV-2 Cells Exposed to ATP",
abstract = "We have shown constitutive expression of the master regulator of osteoblastogenesis, runt-related transcription factor-2 (Runx2), by microglia cells outside bone. Here, we attempted to evaluate the pathological significance of Runx2 in microglial BV-2 cells exposed to ATP at a high concentration. Marked upregulation of Runx2 transcript and protein expression was seen in cells exposed to 1mM ATP for a period longer than 30min without inducing cytotoxicity. The Runx2 upregulation by ATP was prevented by extracellular and intracellular Ca2+ chelators, while thapsigargin upregulated Runx2 expression alone without affecting the upregulation by ATP. A calmodulin antagonist prevented the upregulation by ATP, with calcineurin inhibitors being ineffective. Although ATP markedly increased nuclear levels of nuclear factor of activated T cell-2 (NFAT2), Runx2 promoter activity was not simulated by the introduction of either NFAT1 or NFAT2, but facilitated by that of CCAAT enhancer binding protein-α (C/EBPα), C/EBPβ and nuclear factor (erythroid-derived 2)-like-2 (Nrf2). Exposure to ATP up-regulated C/EBPβ and Nrf2, but not C/EBPα, expression, in addition to increasing nuclear levels of respective corresponding proteins. Runx2 upregulation by ATP was deteriorated by knockdown of C/EBPβ but not by that of Nrf2, however, while exposure to ATP up-regulated matrix metalloproteinase-13 (Mmp13) expression in a Runx2-dependent manner. Overexpression of Runx2 up-regulated Mmp13 expression with promoted incorporation of fluorescent beads into BV-2 cells without ATP. These results suggest that extracellular ATP up-regulates Runx2 expression through activation of the C/EBPβ signaling in a calmodulin-dependent manner to play a pivotal role in phagocytosis in microglial BV-2 cells.",
author = "Ryota Nakazato and Takeshi Takarada and Shinsuke Ikeno and Saki Nakamura and Takaya Kutsukake and Eiichi Hinoi and Yukio Yoneda",
year = "2015",
month = "10",
day = "1",
doi = "10.1002/jcp.24988",
language = "English",
volume = "230",
pages = "2510--2521",
journal = "Journal of Cellular Physiology",
issn = "0021-9541",
publisher = "Wiley-Liss Inc.",
number = "10",

}

TY - JOUR

T1 - Upregulation of Runt-Related Transcription Factor-2 Through CCAAT Enhancer Binding Protein-β Signaling Pathway in Microglial BV-2 Cells Exposed to ATP

AU - Nakazato, Ryota

AU - Takarada, Takeshi

AU - Ikeno, Shinsuke

AU - Nakamura, Saki

AU - Kutsukake, Takaya

AU - Hinoi, Eiichi

AU - Yoneda, Yukio

PY - 2015/10/1

Y1 - 2015/10/1

N2 - We have shown constitutive expression of the master regulator of osteoblastogenesis, runt-related transcription factor-2 (Runx2), by microglia cells outside bone. Here, we attempted to evaluate the pathological significance of Runx2 in microglial BV-2 cells exposed to ATP at a high concentration. Marked upregulation of Runx2 transcript and protein expression was seen in cells exposed to 1mM ATP for a period longer than 30min without inducing cytotoxicity. The Runx2 upregulation by ATP was prevented by extracellular and intracellular Ca2+ chelators, while thapsigargin upregulated Runx2 expression alone without affecting the upregulation by ATP. A calmodulin antagonist prevented the upregulation by ATP, with calcineurin inhibitors being ineffective. Although ATP markedly increased nuclear levels of nuclear factor of activated T cell-2 (NFAT2), Runx2 promoter activity was not simulated by the introduction of either NFAT1 or NFAT2, but facilitated by that of CCAAT enhancer binding protein-α (C/EBPα), C/EBPβ and nuclear factor (erythroid-derived 2)-like-2 (Nrf2). Exposure to ATP up-regulated C/EBPβ and Nrf2, but not C/EBPα, expression, in addition to increasing nuclear levels of respective corresponding proteins. Runx2 upregulation by ATP was deteriorated by knockdown of C/EBPβ but not by that of Nrf2, however, while exposure to ATP up-regulated matrix metalloproteinase-13 (Mmp13) expression in a Runx2-dependent manner. Overexpression of Runx2 up-regulated Mmp13 expression with promoted incorporation of fluorescent beads into BV-2 cells without ATP. These results suggest that extracellular ATP up-regulates Runx2 expression through activation of the C/EBPβ signaling in a calmodulin-dependent manner to play a pivotal role in phagocytosis in microglial BV-2 cells.

AB - We have shown constitutive expression of the master regulator of osteoblastogenesis, runt-related transcription factor-2 (Runx2), by microglia cells outside bone. Here, we attempted to evaluate the pathological significance of Runx2 in microglial BV-2 cells exposed to ATP at a high concentration. Marked upregulation of Runx2 transcript and protein expression was seen in cells exposed to 1mM ATP for a period longer than 30min without inducing cytotoxicity. The Runx2 upregulation by ATP was prevented by extracellular and intracellular Ca2+ chelators, while thapsigargin upregulated Runx2 expression alone without affecting the upregulation by ATP. A calmodulin antagonist prevented the upregulation by ATP, with calcineurin inhibitors being ineffective. Although ATP markedly increased nuclear levels of nuclear factor of activated T cell-2 (NFAT2), Runx2 promoter activity was not simulated by the introduction of either NFAT1 or NFAT2, but facilitated by that of CCAAT enhancer binding protein-α (C/EBPα), C/EBPβ and nuclear factor (erythroid-derived 2)-like-2 (Nrf2). Exposure to ATP up-regulated C/EBPβ and Nrf2, but not C/EBPα, expression, in addition to increasing nuclear levels of respective corresponding proteins. Runx2 upregulation by ATP was deteriorated by knockdown of C/EBPβ but not by that of Nrf2, however, while exposure to ATP up-regulated matrix metalloproteinase-13 (Mmp13) expression in a Runx2-dependent manner. Overexpression of Runx2 up-regulated Mmp13 expression with promoted incorporation of fluorescent beads into BV-2 cells without ATP. These results suggest that extracellular ATP up-regulates Runx2 expression through activation of the C/EBPβ signaling in a calmodulin-dependent manner to play a pivotal role in phagocytosis in microglial BV-2 cells.

UR - http://www.scopus.com/inward/record.url?scp=84932641555&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84932641555&partnerID=8YFLogxK

U2 - 10.1002/jcp.24988

DO - 10.1002/jcp.24988

M3 - Article

VL - 230

SP - 2510

EP - 2521

JO - Journal of Cellular Physiology

JF - Journal of Cellular Physiology

SN - 0021-9541

IS - 10

ER -