Abstract
Objective. Rheumatoid arthritis (RA) is a chronic inflammatory condition characterized by a cellular influx and destruction of the joint architecture. Chemokines characteristically regulate leukocyte recruitment and activation. Chemokine (CC motif) receptor-like 2 (CCRL2) is an orphan receptor with homology to other CC chemokine receptors. We undertook this study to examine CCRL2 expression in RA, cytokine regulation of expression, and the source of a putative ligand in an attempt to determine the role of this receptor during inflammation. Methods. Expression of CCRL2 on joint-infiltrating leukocytes was examined by immunocytochemistry. In vitro studies evaluated CCRL2 expression in primary neutrophils using Northern and Western blotting and reverse transcriptase-polymerase chain reaction. HEK 293 cells expressing two splice variants of CCRL2 (HEK/CCRL2A or HEK/CCRL2B) were generated with a retroviral expression system, and their migration in response to fractions of synovial fluid (SF) from RA patients was examined using a 48-well chamber. Results. CCRL2 expression was observed on all infiltrating neutrophils and on some macrophages obtained from the SF of 5 RA patients. In vitro studies of primary neutrophils revealed that CCRL2 messenger RNA (mRNA) was rapidly up-regulated following stimulation with lipopolysaccharide (1 μg/ml) or tumor necrosis factor (5 ng/ml). The mRNA for both CCRL2A and CCRL2B were expressed in cytokine-stimulated neutrophils. Cells expressing either of these splice variants migrated in response to a fraction of RA SF. Conclusion. CCRL2 expression is up-regulated on synovial neutrophils of RA patients. Inflammatory products present in the SF activate this receptor, indicating that CCRL2 is a functional receptor that may be involved in the pathogenesis of RA.
Original language | English |
---|---|
Pages (from-to) | 1806-1814 |
Number of pages | 9 |
Journal | Arthritis and Rheumatism |
Volume | 50 |
Issue number | 6 |
DOIs | |
Publication status | Published - Jun 1 2004 |
Externally published | Yes |
ASJC Scopus subject areas
- Immunology and Allergy
- Rheumatology
- Immunology
- Pharmacology (medical)