Uniformly cationized protein efficiently reaches the cytosol of mammalian cells

Midori Futami, Yasuyoshi Watanabe, Takashi Asama, Hitoshi Murata, Hiroko Tada, Megumi Kosaka, Hidenori Yamada, Junichiro Futami

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Protein cationization techniques are powerful protein transduction methods for mammalian cells. As we demonstrated previously, cationized proteins with limited conjugation to polyethylenimine have excellent ability to enter into cells by adsorption-mediated endocytosis [Futami, J., et al. (2005) J. Biosci. Bioeng. 99, 95-103]. In this study, we show that proteins with extensive and uniform cationization covering the protein surface reach the cytoplasm and nucleus more effectively than proteins with limited cationic polymers or proteins that are fused to cationic peptides. Although extensive modification of carboxylates results in loss of protein function, chicken avidin retains biotin-binding ability even after extensive amidation of carboxylates. Using this cationized avidin carrier system, the protein transduction ability of variously cationized avidins was investigated using biotinylated protein as a probe. The results revealed that cationized avidins bind rapidly to the cell surface followed by endocytotic uptake. Small amounts of uniformly cationized avidin showed direct penetration into the cytoplasm within a 15 min incubation. This penetration route seemed to be energy dependent and functioned under cellular physiological conditions. A biotinylated exogenous transcription factor protein that penetrated cells was demonstrated to induce target gene expression in living cells.

Original languageEnglish
Pages (from-to)2025-2031
Number of pages7
JournalBioconjugate Chemistry
Volume23
Issue number10
DOIs
Publication statusPublished - Oct 17 2012

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Biomedical Engineering
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry

Fingerprint Dive into the research topics of 'Uniformly cationized protein efficiently reaches the cytosol of mammalian cells'. Together they form a unique fingerprint.

  • Cite this