Ultra-high-molecular-weight polyethylene (UHMWPE) wing method for strong cranioplasty

Kazuki Kobayashi, Tadato Yukiue, Hideyuki Yoshida, Nobushige Tsuboi, Yuu Takahashi, Keigo Makino, Ryu Kimura, Ryo Mizuta, Susumu Sasada, Tomoyuki Ogawa, Noriyuki Nagayama, Takao Yasuhara, Isao Date

Research output: Contribution to journalArticlepeer-review

Abstract

We developed a new cranioplasty method that utilizes artificial bone made of ultra-high-molecular- weight polyethylene, with a wedge-shaped edge (UHMWPE Wing). This study shows the methods and data of case series and finite element analyses with the UHMWPE Wing. A circumferential wing was preoperatively designed for a custom-made artificial bone made of UHMWPE to achieve high fixed power and to minimize the usage of cranial implants. Here, we present 4 years of follow-up data and finite element analyses for patients treated with the UHMWPE Wing between February 2015 and February 2019. Eighteen consecutive patients underwent cranioplasty using our UHMWPE Wing design. There were no postoperative adverse events in 17 of the patients for at least 18 months. One case of hydrocephalus experienced screw loosening and graft uplift due to shunt malfunction. Placement of a ventriculo-peritoneal shunt immediately returned the artificial bone to normal position. Finite element analyses revealed that a model using the UHMWPE Wing had the highest withstand load and lowest deformation. This is the first report on the UHMWPE Wing method. This method may enable clinicians to minimize dead space and achieve high strength in cranioplasty.

Original languageEnglish
Pages (from-to)549-556
Number of pages8
Journalneurologia medico-chirurgica
Volume61
Issue number9
DOIs
Publication statusPublished - 2021

Keywords

  • Artificial bone
  • Cranioplasty
  • Finite element analyses
  • Ultra-high-molecular-weight polyethylene

ASJC Scopus subject areas

  • Surgery
  • Clinical Neurology

Fingerprint

Dive into the research topics of 'Ultra-high-molecular-weight polyethylene (UHMWPE) wing method for strong cranioplasty'. Together they form a unique fingerprint.

Cite this