TRAPPC9 mediates the interaction between p150glued and COPII vesicles at the target membrane

Min Zong, Ayano Satoh, Mei Kuen Yu, Ka Yu Siu, Wing Yan Ng, Hsiao Chang Chan, Julian A. Tanner, Sidney Yu

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

Background: The transport of endoplasmic reticulum (ER)-derived COPII vesicles toward the ER-Golgi intermediate compartment (ERGIC) requires cytoplasmic dynein and is dependent on microtubules. p150Glued, a subunit of dynactin, has been implicated in the transport of COPII vesicles via its interaction with COPII coat components Sec23 and Sec24. However, whether and how COPII vesicle tether, TRAPP (Transport protein particle), plays a role in the interaction between COPII vesicles and microtubules is currently unknown. Principle Findings: We address the functional relationship between COPII tether TRAPP and dynactin. Overexpressed TRAPP subunits interfered with microtubule architecture by competing p150Glued away from the MTOC. TRAPP subunit TRAPPC9 bound directly to p150Glued via the same carboxyl terminal domain of p150Glued that binds Sec23 and Sec24. TRAPPC9 also inhibited the interaction between p150Glued and Sec23/Sec24 both in vitro and in vivo, suggesting that TRAPPC9 serves to uncouple p150Glued from the COPII coat, and to relay the vesicle-dynactin interaction at the target membrane. Conclusions: These findings provide a new perspective on the function of TRAPP as an adaptor between the ERGIC membrane and dynactin. By preserving the connection between dynactin and the tethered and/or fused vesicles, TRAPP allows nascent ERGIC to continue the movement along the microtubules as they mature into the cis-Golgi.

Original languageEnglish
Article numbere29995
JournalPloS one
Volume7
Issue number1
DOIs
Publication statusPublished - Jan 18 2012

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'TRAPPC9 mediates the interaction between p150<sup>glued</sup> and COPII vesicles at the target membrane'. Together they form a unique fingerprint.

  • Cite this

    Zong, M., Satoh, A., Yu, M. K., Siu, K. Y., Ng, W. Y., Chan, H. C., Tanner, J. A., & Yu, S. (2012). TRAPPC9 mediates the interaction between p150glued and COPII vesicles at the target membrane. PloS one, 7(1), [e29995]. https://doi.org/10.1371/journal.pone.0029995