Three-dimensional identification of semi-elliptical surface crack by means of direct-current electrical potential difference method with multiple-probe sensor

Naoya Tada, Masayoshi Okada, Jun Iwamoto

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

A method of three-dimensional identification of a semi-elliptical surface crack by direct-current electrical potential difference method with a multiple-probe sensor was proposed and its validity was numerically examined. The condition of the surface crack embedded in a conductive plate was specified by the two-dimensional location of the crack center, length, and depth of the crack, and the surface and inward angles of the crack plane. Identification was carried out based on the distribution of the electrical potential difference around the crack measured on the surface of the plate with the "multiple-probe sensor" which is composed of many probes aligned in two orthogonal directions. The location and surface angle were evaluated using the point symmetry of the potential difference distribution. The inward angle was determined by the magnitude of symmetry of potential difference distribution with reference to the evaluated crack line. Finally, length and depth of the crack were determined using the exact solution of potential difference for an inclined inner elliptical crack which yields similar potential difference to that of the inclined semi-elliptical surface crack. The validity of the method was numerically confirmed by carrying out the evaluation based on the result obtained by finite element analysis.

Original languageEnglish
Pages (from-to)441-448
Number of pages8
JournalJournal of Pressure Vessel Technology, Transactions of the ASME
Volume129
Issue number3
DOIs
Publication statusPublished - Aug 1 2007

ASJC Scopus subject areas

  • Safety, Risk, Reliability and Quality
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Three-dimensional identification of semi-elliptical surface crack by means of direct-current electrical potential difference method with multiple-probe sensor'. Together they form a unique fingerprint.

  • Cite this