TY - JOUR
T1 - Theory for laser-induced ultrafast phase transitions in carbon
AU - Jeschke, H. O.
AU - Garcia, M. E.
AU - Bennemann, K. H.
PY - 1999/12/1
Y1 - 1999/12/1
N2 - The response of carbon to femtosecond laser pulses of arbitrary form, different durations, and different intensities is studied theoretically. We perform molecular dynamics simulations based on a microscopic electronic Hamiltonian. We include in our model the theoretical description of the pulse form, the electron thermalization, and diffusion effects explicitly. We apply our method to diamond and C60 crystals. For the diamond case, we show that a femtosecond laser pulse induces a nonequilibrium transition to graphite, which takes place for a wide range of pulse durations and intensities. This ultrafast collective motion of the atoms occurs within a time scale shorter than 100 fs. The laser-induced melting of a C60 crystal under pressure is also analyzed. In this case, an ultrafast melting of the system occurs. We discuss the mechanisms underlying these nonequilibrium phase transitions.
AB - The response of carbon to femtosecond laser pulses of arbitrary form, different durations, and different intensities is studied theoretically. We perform molecular dynamics simulations based on a microscopic electronic Hamiltonian. We include in our model the theoretical description of the pulse form, the electron thermalization, and diffusion effects explicitly. We apply our method to diamond and C60 crystals. For the diamond case, we show that a femtosecond laser pulse induces a nonequilibrium transition to graphite, which takes place for a wide range of pulse durations and intensities. This ultrafast collective motion of the atoms occurs within a time scale shorter than 100 fs. The laser-induced melting of a C60 crystal under pressure is also analyzed. In this case, an ultrafast melting of the system occurs. We discuss the mechanisms underlying these nonequilibrium phase transitions.
UR - http://www.scopus.com/inward/record.url?scp=0002694518&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0002694518&partnerID=8YFLogxK
U2 - 10.1007/s003399900340
DO - 10.1007/s003399900340
M3 - Article
AN - SCOPUS:0002694518
VL - 69
SP - S49-S53
JO - Applied Physics A: Materials Science and Processing
JF - Applied Physics A: Materials Science and Processing
SN - 0947-8396
IS - 7
ER -