The spread of rice dwarf virus among cells of its insect vector exploits virus-induced tubular structures

Taiyun Wei, Akira Kikuchi, Yusuke Moriyasu, Nobuhiro Suzuki, Takumi Shimizu, Kyoji Hagiwara, Hongyan Chen, Mami Takahashi, Tamaki Ichiki-Uehara, Toshihiro Omura

Research output: Contribution to journalArticle

62 Citations (Scopus)

Abstract

Various cytopathological structures, known as inclusion bodies, are formed upon infection of cultured leafhopper cells by Rice dwarf virus, a member of the family Reoviridae. These structures include tubules of approximately 85 nm in diameter which are composed of the nonstructural viral protein Pns10 and contain viral particles. Such tubular structures were produced in heterologous non-host insect cells that expressed Pns10 of the virus. These tubules, when associated with actin-based filopodia, were able to protrude from the surface of cells and to penetrate neighboring cells. A binding assay in vitro revealed the specific binding of Pns10 to actin. Infection of clusters of cells was readily apparent 5 days after inoculation at a low multiplicity of infection with the virus, even in the presence of neutralizing antibodies. However, treatment of host cells with drugs that inhibited the elongation of actin filaments abolished the extension of Pns10 tubules from the surface of cells, with a significant simultaneous decrease in the extent of infection of neighboring cells. These results together revealed a previously undescribed aspect of the intercellular spread of Rice dwarf virus, wherein the virus exploits tubules composed of a nonstructural viral protein and actin-based filopodia to move into neighboring cells.

Original languageEnglish
Pages (from-to)8593-8602
Number of pages10
JournalJournal of Virology
Volume80
Issue number17
DOIs
Publication statusPublished - Sep 2006

Fingerprint

Rice dwarf virus
Insect Vectors
insect vectors
Viruses
viruses
Viral Nonstructural Proteins
cells
Actins
pseudopodia
Pseudopodia
actin
infection
Infection
Reoviridae
Hemiptera
Oryza
Inclusion Bodies
Virus Diseases
Neutralizing Antibodies
Actin Cytoskeleton

ASJC Scopus subject areas

  • Immunology

Cite this

The spread of rice dwarf virus among cells of its insect vector exploits virus-induced tubular structures. / Wei, Taiyun; Kikuchi, Akira; Moriyasu, Yusuke; Suzuki, Nobuhiro; Shimizu, Takumi; Hagiwara, Kyoji; Chen, Hongyan; Takahashi, Mami; Ichiki-Uehara, Tamaki; Omura, Toshihiro.

In: Journal of Virology, Vol. 80, No. 17, 09.2006, p. 8593-8602.

Research output: Contribution to journalArticle

Wei, T, Kikuchi, A, Moriyasu, Y, Suzuki, N, Shimizu, T, Hagiwara, K, Chen, H, Takahashi, M, Ichiki-Uehara, T & Omura, T 2006, 'The spread of rice dwarf virus among cells of its insect vector exploits virus-induced tubular structures', Journal of Virology, vol. 80, no. 17, pp. 8593-8602. https://doi.org/10.1128/JVI.00537-06
Wei, Taiyun ; Kikuchi, Akira ; Moriyasu, Yusuke ; Suzuki, Nobuhiro ; Shimizu, Takumi ; Hagiwara, Kyoji ; Chen, Hongyan ; Takahashi, Mami ; Ichiki-Uehara, Tamaki ; Omura, Toshihiro. / The spread of rice dwarf virus among cells of its insect vector exploits virus-induced tubular structures. In: Journal of Virology. 2006 ; Vol. 80, No. 17. pp. 8593-8602.
@article{b5b2c83f411f41b1a0a800e30c7641d3,
title = "The spread of rice dwarf virus among cells of its insect vector exploits virus-induced tubular structures",
abstract = "Various cytopathological structures, known as inclusion bodies, are formed upon infection of cultured leafhopper cells by Rice dwarf virus, a member of the family Reoviridae. These structures include tubules of approximately 85 nm in diameter which are composed of the nonstructural viral protein Pns10 and contain viral particles. Such tubular structures were produced in heterologous non-host insect cells that expressed Pns10 of the virus. These tubules, when associated with actin-based filopodia, were able to protrude from the surface of cells and to penetrate neighboring cells. A binding assay in vitro revealed the specific binding of Pns10 to actin. Infection of clusters of cells was readily apparent 5 days after inoculation at a low multiplicity of infection with the virus, even in the presence of neutralizing antibodies. However, treatment of host cells with drugs that inhibited the elongation of actin filaments abolished the extension of Pns10 tubules from the surface of cells, with a significant simultaneous decrease in the extent of infection of neighboring cells. These results together revealed a previously undescribed aspect of the intercellular spread of Rice dwarf virus, wherein the virus exploits tubules composed of a nonstructural viral protein and actin-based filopodia to move into neighboring cells.",
author = "Taiyun Wei and Akira Kikuchi and Yusuke Moriyasu and Nobuhiro Suzuki and Takumi Shimizu and Kyoji Hagiwara and Hongyan Chen and Mami Takahashi and Tamaki Ichiki-Uehara and Toshihiro Omura",
year = "2006",
month = "9",
doi = "10.1128/JVI.00537-06",
language = "English",
volume = "80",
pages = "8593--8602",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "17",

}

TY - JOUR

T1 - The spread of rice dwarf virus among cells of its insect vector exploits virus-induced tubular structures

AU - Wei, Taiyun

AU - Kikuchi, Akira

AU - Moriyasu, Yusuke

AU - Suzuki, Nobuhiro

AU - Shimizu, Takumi

AU - Hagiwara, Kyoji

AU - Chen, Hongyan

AU - Takahashi, Mami

AU - Ichiki-Uehara, Tamaki

AU - Omura, Toshihiro

PY - 2006/9

Y1 - 2006/9

N2 - Various cytopathological structures, known as inclusion bodies, are formed upon infection of cultured leafhopper cells by Rice dwarf virus, a member of the family Reoviridae. These structures include tubules of approximately 85 nm in diameter which are composed of the nonstructural viral protein Pns10 and contain viral particles. Such tubular structures were produced in heterologous non-host insect cells that expressed Pns10 of the virus. These tubules, when associated with actin-based filopodia, were able to protrude from the surface of cells and to penetrate neighboring cells. A binding assay in vitro revealed the specific binding of Pns10 to actin. Infection of clusters of cells was readily apparent 5 days after inoculation at a low multiplicity of infection with the virus, even in the presence of neutralizing antibodies. However, treatment of host cells with drugs that inhibited the elongation of actin filaments abolished the extension of Pns10 tubules from the surface of cells, with a significant simultaneous decrease in the extent of infection of neighboring cells. These results together revealed a previously undescribed aspect of the intercellular spread of Rice dwarf virus, wherein the virus exploits tubules composed of a nonstructural viral protein and actin-based filopodia to move into neighboring cells.

AB - Various cytopathological structures, known as inclusion bodies, are formed upon infection of cultured leafhopper cells by Rice dwarf virus, a member of the family Reoviridae. These structures include tubules of approximately 85 nm in diameter which are composed of the nonstructural viral protein Pns10 and contain viral particles. Such tubular structures were produced in heterologous non-host insect cells that expressed Pns10 of the virus. These tubules, when associated with actin-based filopodia, were able to protrude from the surface of cells and to penetrate neighboring cells. A binding assay in vitro revealed the specific binding of Pns10 to actin. Infection of clusters of cells was readily apparent 5 days after inoculation at a low multiplicity of infection with the virus, even in the presence of neutralizing antibodies. However, treatment of host cells with drugs that inhibited the elongation of actin filaments abolished the extension of Pns10 tubules from the surface of cells, with a significant simultaneous decrease in the extent of infection of neighboring cells. These results together revealed a previously undescribed aspect of the intercellular spread of Rice dwarf virus, wherein the virus exploits tubules composed of a nonstructural viral protein and actin-based filopodia to move into neighboring cells.

UR - http://www.scopus.com/inward/record.url?scp=33748676100&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33748676100&partnerID=8YFLogxK

U2 - 10.1128/JVI.00537-06

DO - 10.1128/JVI.00537-06

M3 - Article

VL - 80

SP - 8593

EP - 8602

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 17

ER -