The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Infiltration of leukocytes is one of the hallmarks of the inflammatory response. Among the leukocyte populations, neutrophils are the first to infiltrate, followed by monocytes and lymphocytes, suggesting the presence of mediators that specifically recruit these cell types. Cytokine-like chemoattractants with monocyte chemotactic activity, such as lymphocyte-derived chemotactic factor (LDCF) or tumor-derived chemotactic factor (TDCF), were reported as molecules that could play a critical role in the recruitment of monocytes into sites of immune responses or tumors; however, their identities remained unclear. In the 1980s, researchers began to test the hypothesis that leukocyte chemotactic activity is a part of the wider activities exhibited by cytokines, such as interleukin-1 (IL-1). In 1987, we demonstrated, for the first time, the presence of a cytokine like chemoattractant with cell type-specificity (now known as the chemokine interleukin-8 or CXC chemokine ligand 8) that was different from IL-1. This led us to the purification of the second such molecule with monocyte chemotactic activity. This monocyte chemoattractant was found identical to the previously described LDCF or TDCF, and termed monocyte chemoattractant protein-1 (MCP-1). Isolation of MCP-1 created a revolution in not only inflammation but also cancer research that continues today, and MCP-1 has become a molecular target to treat patients with many diseases. In this review, I will first describe a history associated with the discovery of MCP-1 and then discuss complex mechanisms regulating MCP-1 production in tumor microenvironments.

Original languageEnglish
JournalCytokine
DOIs
Publication statusAccepted/In press - Dec 6 2016

Fingerprint

Tumor Microenvironment
Chemokine CCL2
Chemotactic Factors
Tumors
Monocytes
Leukocytes
Cytokines
Interleukin-1
Neoplasms
CXC Chemokines
Molecules
Lymphocytes
Interleukin-8
Chemokines
Infiltration
Purification
Neutrophils
History
Research Personnel
Ligands

Keywords

  • CCL2
  • Chemokine
  • MCP-1
  • Tumor microenvironment

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology
  • Biochemistry
  • Hematology
  • Molecular Biology

Cite this

@article{e9ec3283fe8a411b9bea2ad2a923d5ef,
title = "The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments",
abstract = "Infiltration of leukocytes is one of the hallmarks of the inflammatory response. Among the leukocyte populations, neutrophils are the first to infiltrate, followed by monocytes and lymphocytes, suggesting the presence of mediators that specifically recruit these cell types. Cytokine-like chemoattractants with monocyte chemotactic activity, such as lymphocyte-derived chemotactic factor (LDCF) or tumor-derived chemotactic factor (TDCF), were reported as molecules that could play a critical role in the recruitment of monocytes into sites of immune responses or tumors; however, their identities remained unclear. In the 1980s, researchers began to test the hypothesis that leukocyte chemotactic activity is a part of the wider activities exhibited by cytokines, such as interleukin-1 (IL-1). In 1987, we demonstrated, for the first time, the presence of a cytokine like chemoattractant with cell type-specificity (now known as the chemokine interleukin-8 or CXC chemokine ligand 8) that was different from IL-1. This led us to the purification of the second such molecule with monocyte chemotactic activity. This monocyte chemoattractant was found identical to the previously described LDCF or TDCF, and termed monocyte chemoattractant protein-1 (MCP-1). Isolation of MCP-1 created a revolution in not only inflammation but also cancer research that continues today, and MCP-1 has become a molecular target to treat patients with many diseases. In this review, I will first describe a history associated with the discovery of MCP-1 and then discuss complex mechanisms regulating MCP-1 production in tumor microenvironments.",
keywords = "CCL2, Chemokine, MCP-1, Tumor microenvironment",
author = "Teizo Yoshimura",
year = "2016",
month = "12",
day = "6",
doi = "10.1016/j.cyto.2017.02.001",
language = "English",
journal = "Cytokine",
issn = "1043-4666",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments

AU - Yoshimura, Teizo

PY - 2016/12/6

Y1 - 2016/12/6

N2 - Infiltration of leukocytes is one of the hallmarks of the inflammatory response. Among the leukocyte populations, neutrophils are the first to infiltrate, followed by monocytes and lymphocytes, suggesting the presence of mediators that specifically recruit these cell types. Cytokine-like chemoattractants with monocyte chemotactic activity, such as lymphocyte-derived chemotactic factor (LDCF) or tumor-derived chemotactic factor (TDCF), were reported as molecules that could play a critical role in the recruitment of monocytes into sites of immune responses or tumors; however, their identities remained unclear. In the 1980s, researchers began to test the hypothesis that leukocyte chemotactic activity is a part of the wider activities exhibited by cytokines, such as interleukin-1 (IL-1). In 1987, we demonstrated, for the first time, the presence of a cytokine like chemoattractant with cell type-specificity (now known as the chemokine interleukin-8 or CXC chemokine ligand 8) that was different from IL-1. This led us to the purification of the second such molecule with monocyte chemotactic activity. This monocyte chemoattractant was found identical to the previously described LDCF or TDCF, and termed monocyte chemoattractant protein-1 (MCP-1). Isolation of MCP-1 created a revolution in not only inflammation but also cancer research that continues today, and MCP-1 has become a molecular target to treat patients with many diseases. In this review, I will first describe a history associated with the discovery of MCP-1 and then discuss complex mechanisms regulating MCP-1 production in tumor microenvironments.

AB - Infiltration of leukocytes is one of the hallmarks of the inflammatory response. Among the leukocyte populations, neutrophils are the first to infiltrate, followed by monocytes and lymphocytes, suggesting the presence of mediators that specifically recruit these cell types. Cytokine-like chemoattractants with monocyte chemotactic activity, such as lymphocyte-derived chemotactic factor (LDCF) or tumor-derived chemotactic factor (TDCF), were reported as molecules that could play a critical role in the recruitment of monocytes into sites of immune responses or tumors; however, their identities remained unclear. In the 1980s, researchers began to test the hypothesis that leukocyte chemotactic activity is a part of the wider activities exhibited by cytokines, such as interleukin-1 (IL-1). In 1987, we demonstrated, for the first time, the presence of a cytokine like chemoattractant with cell type-specificity (now known as the chemokine interleukin-8 or CXC chemokine ligand 8) that was different from IL-1. This led us to the purification of the second such molecule with monocyte chemotactic activity. This monocyte chemoattractant was found identical to the previously described LDCF or TDCF, and termed monocyte chemoattractant protein-1 (MCP-1). Isolation of MCP-1 created a revolution in not only inflammation but also cancer research that continues today, and MCP-1 has become a molecular target to treat patients with many diseases. In this review, I will first describe a history associated with the discovery of MCP-1 and then discuss complex mechanisms regulating MCP-1 production in tumor microenvironments.

KW - CCL2

KW - Chemokine

KW - MCP-1

KW - Tumor microenvironment

UR - http://www.scopus.com/inward/record.url?scp=85011918299&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85011918299&partnerID=8YFLogxK

U2 - 10.1016/j.cyto.2017.02.001

DO - 10.1016/j.cyto.2017.02.001

M3 - Article

C2 - 28189389

AN - SCOPUS:85011918299

JO - Cytokine

JF - Cytokine

SN - 1043-4666

ER -