### Abstract

The two-dimensional isotropic turbulence in an incompressible fluid is investigated using the modified zero fourth-order cumulant approximation. The dynamical equation for the energy spectrum obtained under this approximation is solved numerically and the similarity laws governing the solution in the energy-containing and enstrophy-dissipation ranges are derived analytically. At large Reynolds numbers the numerical solutions yield the k-3 inertial subrange spectrum which was predicted by Kraichnan (1967), Leith (1968) and Batchelor (1969) assuming a finite enstrophy dissipation in the inviscid limit. The energy-containing range is found to satisfy an inviscid similarity while the enstrophy-dissipation range is governed by the quasi-equilibrium similarity with respect to the enstrophy dissipation as proposed by Batchelor (1969). There exists a critical time tc which separates the initial period (t < tc) and the similarity period (t > tc) in which the enstrophy dissipation vanishes and remains non-zero respectively in the inviscid limit. Unlike the case of three-dimensional turbulence, tc is not fixed but increases indefinitely as the viscosity tends to zero.

Original language | English |
---|---|

Pages (from-to) | 475-496 |

Number of pages | 22 |

Journal | Journal of Fluid Mechanics |

Volume | 110 |

DOIs | |

Publication status | Published - Sep 1981 |

Externally published | Yes |

### ASJC Scopus subject areas

- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering