Abstract
Let G be a finite nontrivial group and A(G) the Burnside ring of G. Let F be a set of subgroups of G which is closed under taking subgroups and taking conjugations by elements in G. Then let F denote the category whose objects are elements in F and whose morphisms are triples (H; g;K) such that H, K ∈ F and g ∈ G with gHg-1 ⊂ K. Taking the inverse limit of A(H), where H ∈ F, we obtain the ring A(F) and the restriction homomorphism resF G: A(G) → A(F). We study this restriction homomorphism.
Original language | English |
---|---|
Pages (from-to) | 427-444 |
Number of pages | 18 |
Journal | Hokkaido Mathematical Journal |
Volume | 47 |
Issue number | 2 |
Publication status | Published - Jan 1 2018 |
Keywords
- Burnside ring
- Inverse limit
- Restriction homomorphism
ASJC Scopus subject areas
- Mathematics(all)