TY - JOUR
T1 - The Extracellular Matrix in the Mouse Brain
T2 - Its Reactions to Endo-Alpha-N-Acetylgalactosaminidase and Certain Other Enzymes
AU - Murakami, Takuro
AU - Ohtsuka, Aiji
AU - Su, W. D.
AU - Taguchi, Takehito
AU - Oohashi, Toshitaka
AU - Murakami, Tetsuro
AU - Abe, Koji
AU - Ninomiya, Yoshifumi
N1 - Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 1999/8
Y1 - 1999/8
N2 - As our previous studies have indicated, the cingulate cortex of the adult mouse brain contains many neurons with rich cell surface glycoproteins which are linked by collagenous ligands to perineuronal proteoglycans. The present study demonstrated that exclusive incubation with endo-alpha-N-acetylgalactosaminidase abolished the lectin Vicia villosa or Wisteria floribunda agglutinin (VVA or WFA) labeling of the nerve cell surface glycoproteins, while it neither interfered with the cationic iron colloid or aldehyde fuchsin stainings of the perineuronal proteoglycans nor abolished the Gömöri's ammoniacal silver impregnation of the collagenous ligands. Double incubations with endo-alpha-N-acetylgalactosaminidase and collagenase did not eliminate the lectin VVA or WFA labeling of the nerve cell surface glycoproteins, though they did eliminate the cationic iron colloid and aldehyde fuchsin stainings of the perineuronal proteoglycans as well as the Gömöri's ammoniacal silver impregnation of the collagenous ligands. Triple incubations with endo-alpha-N-acetylgalactosaminidase, collagenase, and endo-alpha-N-acetylgalactosaminidase abolished the lectin VVA or WFA labeling of the nerve cell surface glycoproteins, and also eliminated the cationic iron colloid and aldehyde fuchsin stainings of the perineuronal proteoglycans and the Gömöri's ammoniacal silver impregnation of the collagenous ligands. These findings indicate that: the nerve cell surface glycoproteins or their terminal N-acetylgalactosamines are digested by endo-alpha-N-acetylgalactosaminidase; these galactosamines associated with the collagenous ligands or perineuronal proteoglycans are not digested by endo-alpha-N-acetylgalactosaminidase; and the terminal N-acetylgalactosamines newly exposed by collagenase incubation are digested by this galactosaminidase. It was further demonstrated that hyaluronidase incubation neither digests the collagenous ligands nor revives the lectin VVA or WFA labeling of the nerve cell surface proteoglycans.
AB - As our previous studies have indicated, the cingulate cortex of the adult mouse brain contains many neurons with rich cell surface glycoproteins which are linked by collagenous ligands to perineuronal proteoglycans. The present study demonstrated that exclusive incubation with endo-alpha-N-acetylgalactosaminidase abolished the lectin Vicia villosa or Wisteria floribunda agglutinin (VVA or WFA) labeling of the nerve cell surface glycoproteins, while it neither interfered with the cationic iron colloid or aldehyde fuchsin stainings of the perineuronal proteoglycans nor abolished the Gömöri's ammoniacal silver impregnation of the collagenous ligands. Double incubations with endo-alpha-N-acetylgalactosaminidase and collagenase did not eliminate the lectin VVA or WFA labeling of the nerve cell surface glycoproteins, though they did eliminate the cationic iron colloid and aldehyde fuchsin stainings of the perineuronal proteoglycans as well as the Gömöri's ammoniacal silver impregnation of the collagenous ligands. Triple incubations with endo-alpha-N-acetylgalactosaminidase, collagenase, and endo-alpha-N-acetylgalactosaminidase abolished the lectin VVA or WFA labeling of the nerve cell surface glycoproteins, and also eliminated the cationic iron colloid and aldehyde fuchsin stainings of the perineuronal proteoglycans and the Gömöri's ammoniacal silver impregnation of the collagenous ligands. These findings indicate that: the nerve cell surface glycoproteins or their terminal N-acetylgalactosamines are digested by endo-alpha-N-acetylgalactosaminidase; these galactosamines associated with the collagenous ligands or perineuronal proteoglycans are not digested by endo-alpha-N-acetylgalactosaminidase; and the terminal N-acetylgalactosamines newly exposed by collagenase incubation are digested by this galactosaminidase. It was further demonstrated that hyaluronidase incubation neither digests the collagenous ligands nor revives the lectin VVA or WFA labeling of the nerve cell surface proteoglycans.
UR - http://www.scopus.com/inward/record.url?scp=0033176233&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033176233&partnerID=8YFLogxK
U2 - 10.1679/aohc.62.273
DO - 10.1679/aohc.62.273
M3 - Article
C2 - 10495882
AN - SCOPUS:0033176233
VL - 62
SP - 273
EP - 281
JO - Archives of Histology and Cytology
JF - Archives of Histology and Cytology
SN - 0914-9465
IS - 3
ER -