TY - JOUR
T1 - The critical role of the forest morphology for dry drawability of few-walled carbon nanotubes
AU - Inoue, Hirotaka
AU - Hada, Masaki
AU - Nakagawa, Tomohiro
AU - Marui, Tatsuki
AU - Nishikawa, Takeshi
AU - Yamashita, Yoshifumi
AU - Inoue, Yoku
AU - Takahashi, Kazuhiko
AU - Hayashi, Yasuhiko
N1 - Funding Information:
This work was supported by JSPS KAKENHI (Grant Numbers JP19H05332 , JP18K18994 , JP18H01708 , and JP18H04519 ) and the Support Center for Advanced Telecommunications Technology Research Foundation . We thank Edanz Group ( www.edanzediting.com/ac ) for editing a draft of this manuscript. Appendix A
Publisher Copyright:
© 2019
PY - 2020/3
Y1 - 2020/3
N2 - Carbon nanotube (CNT) yarns comprise few-walled CNTs (FWCNTs), mainly consisting of double- and triple-walled CNTs, and have several properties which are beneficial for practical bulk-scale carbon devices. These features include high tensile strength, electrical conductivity, thermal conductivity, chemical stability, and environmental tolerance. However, the synthesis window for fabricating CNT yarns with FWCNTs by the dry-spinning method is quite narrow and optimal conditions have yet to be determined. In this study, we fabricated CNT forests mainly comprised of FWCNTs at various synthesis conditions (temperature and time). The drawability of the CNT forests was characterized depending on the synthesis conditions. Our results show that optimum values exist for continuously drawable CNT forests in terms of both their height (>130 μm) and bulk density (>90 mg/cm3) for satisfying enough entanglement force between the CNT bundles. The diameter and number of walls of the CNTs are controlled by the temperature during the formation of catalyst particles because the sizes of catalyst particles are approximately equal to the outer diameter of CNTs. All temperature conditions in the range 350–500 °C, used to form catalyst particles, resulted in a drawable FWCNT forest. These insights will be useful for developing devices based on FWCNT yarns.
AB - Carbon nanotube (CNT) yarns comprise few-walled CNTs (FWCNTs), mainly consisting of double- and triple-walled CNTs, and have several properties which are beneficial for practical bulk-scale carbon devices. These features include high tensile strength, electrical conductivity, thermal conductivity, chemical stability, and environmental tolerance. However, the synthesis window for fabricating CNT yarns with FWCNTs by the dry-spinning method is quite narrow and optimal conditions have yet to be determined. In this study, we fabricated CNT forests mainly comprised of FWCNTs at various synthesis conditions (temperature and time). The drawability of the CNT forests was characterized depending on the synthesis conditions. Our results show that optimum values exist for continuously drawable CNT forests in terms of both their height (>130 μm) and bulk density (>90 mg/cm3) for satisfying enough entanglement force between the CNT bundles. The diameter and number of walls of the CNTs are controlled by the temperature during the formation of catalyst particles because the sizes of catalyst particles are approximately equal to the outer diameter of CNTs. All temperature conditions in the range 350–500 °C, used to form catalyst particles, resulted in a drawable FWCNT forest. These insights will be useful for developing devices based on FWCNT yarns.
UR - http://www.scopus.com/inward/record.url?scp=85076832798&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076832798&partnerID=8YFLogxK
U2 - 10.1016/j.carbon.2019.11.038
DO - 10.1016/j.carbon.2019.11.038
M3 - Article
AN - SCOPUS:85076832798
VL - 158
SP - 662
EP - 671
JO - Carbon
JF - Carbon
SN - 0008-6223
ER -