The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex

Eric Boudreau, Yuichiro Takahashi, Claude Lemieux, Monique Turmel, Jean David Rochaix

Research output: Contribution to journalArticle

157 Citations (Scopus)

Abstract

The chloroplast genes ycf3 and ycf4 from the green alga Chlamydomonas reinhardtii have been characterized. The deduced amino acid sequences of Ycf4 (197 residues) and Ycf3 (172 residues) display 41-52% and 64-78% sequence identity, respectively, with their homologues from algae, land plants and cyanobacteria. In C.reinhardtii, ycf4 and ycf3 are co-transcribed as members of the rps9-ycf4-ycf3-rps18 polycistronic transcriptional unit into RNAs of 8.0 kb and 3.0 kb corresponding to the entire unit and to rps9-ycf4-ycf3, respectively. Using biolistic transformation, ycf4 and ycf3 were disrupted with a chloroplast selectable marker cassette. Transformants lacking ycf4 or ycf3 were unable to grow photoautotrophically and were deficient in photosystem I activity. Western blot analysis showed that the photosystem I (PSI) complex does not accumulate stably in thylakoid membranes of these transformants. Ycf4 and Ycf3 were localized on thylakoid membranes but not stably associated with the PSI complex and accumulated to wild-type levels in mutants lacking PSI. RNA blot hybridizations showed that transcripts of psaA, psaB and psaC accumulate normally in these mutants and use of chimeric reporter genes revealed that Ycf3 is not required for initiation of translation of psaA and psaB mRNA. Our results indicate that Ycf3 and Ycf4 are required for stable accumulation of the PSI complex.

Original languageEnglish
Pages (from-to)6095-6104
Number of pages10
JournalEMBO Journal
Volume16
Issue number20
DOIs
Publication statusPublished - 1997

Fingerprint

Photosystem I Protein Complex
Chlamydomonas reinhardtii
Chloroplasts
Open Reading Frames
Thylakoids
Algae
Genes
Biolistics
Chloroplast Genes
Embryophyta
RNA
Membranes
Chlorophyta
Cyanobacteria
Reporter Genes
Amino Acid Sequence
Western Blotting
Display devices
Amino Acids
Messenger RNA

Keywords

  • C. reinhardtii
  • Chloroplast genes
  • Open reading frame
  • Photosystem I complex
  • Thylakoid membrane

ASJC Scopus subject areas

  • Genetics
  • Cell Biology

Cite this

The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. / Boudreau, Eric; Takahashi, Yuichiro; Lemieux, Claude; Turmel, Monique; Rochaix, Jean David.

In: EMBO Journal, Vol. 16, No. 20, 1997, p. 6095-6104.

Research output: Contribution to journalArticle

Boudreau, Eric ; Takahashi, Yuichiro ; Lemieux, Claude ; Turmel, Monique ; Rochaix, Jean David. / The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. In: EMBO Journal. 1997 ; Vol. 16, No. 20. pp. 6095-6104.
@article{e11805de11c74a5992696f8aceedb7a1,
title = "The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex",
abstract = "The chloroplast genes ycf3 and ycf4 from the green alga Chlamydomonas reinhardtii have been characterized. The deduced amino acid sequences of Ycf4 (197 residues) and Ycf3 (172 residues) display 41-52{\%} and 64-78{\%} sequence identity, respectively, with their homologues from algae, land plants and cyanobacteria. In C.reinhardtii, ycf4 and ycf3 are co-transcribed as members of the rps9-ycf4-ycf3-rps18 polycistronic transcriptional unit into RNAs of 8.0 kb and 3.0 kb corresponding to the entire unit and to rps9-ycf4-ycf3, respectively. Using biolistic transformation, ycf4 and ycf3 were disrupted with a chloroplast selectable marker cassette. Transformants lacking ycf4 or ycf3 were unable to grow photoautotrophically and were deficient in photosystem I activity. Western blot analysis showed that the photosystem I (PSI) complex does not accumulate stably in thylakoid membranes of these transformants. Ycf4 and Ycf3 were localized on thylakoid membranes but not stably associated with the PSI complex and accumulated to wild-type levels in mutants lacking PSI. RNA blot hybridizations showed that transcripts of psaA, psaB and psaC accumulate normally in these mutants and use of chimeric reporter genes revealed that Ycf3 is not required for initiation of translation of psaA and psaB mRNA. Our results indicate that Ycf3 and Ycf4 are required for stable accumulation of the PSI complex.",
keywords = "C. reinhardtii, Chloroplast genes, Open reading frame, Photosystem I complex, Thylakoid membrane",
author = "Eric Boudreau and Yuichiro Takahashi and Claude Lemieux and Monique Turmel and Rochaix, {Jean David}",
year = "1997",
doi = "10.1093/emboj/16.20.6095",
language = "English",
volume = "16",
pages = "6095--6104",
journal = "EMBO Journal",
issn = "0261-4189",
publisher = "Nature Publishing Group",
number = "20",

}

TY - JOUR

T1 - The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex

AU - Boudreau, Eric

AU - Takahashi, Yuichiro

AU - Lemieux, Claude

AU - Turmel, Monique

AU - Rochaix, Jean David

PY - 1997

Y1 - 1997

N2 - The chloroplast genes ycf3 and ycf4 from the green alga Chlamydomonas reinhardtii have been characterized. The deduced amino acid sequences of Ycf4 (197 residues) and Ycf3 (172 residues) display 41-52% and 64-78% sequence identity, respectively, with their homologues from algae, land plants and cyanobacteria. In C.reinhardtii, ycf4 and ycf3 are co-transcribed as members of the rps9-ycf4-ycf3-rps18 polycistronic transcriptional unit into RNAs of 8.0 kb and 3.0 kb corresponding to the entire unit and to rps9-ycf4-ycf3, respectively. Using biolistic transformation, ycf4 and ycf3 were disrupted with a chloroplast selectable marker cassette. Transformants lacking ycf4 or ycf3 were unable to grow photoautotrophically and were deficient in photosystem I activity. Western blot analysis showed that the photosystem I (PSI) complex does not accumulate stably in thylakoid membranes of these transformants. Ycf4 and Ycf3 were localized on thylakoid membranes but not stably associated with the PSI complex and accumulated to wild-type levels in mutants lacking PSI. RNA blot hybridizations showed that transcripts of psaA, psaB and psaC accumulate normally in these mutants and use of chimeric reporter genes revealed that Ycf3 is not required for initiation of translation of psaA and psaB mRNA. Our results indicate that Ycf3 and Ycf4 are required for stable accumulation of the PSI complex.

AB - The chloroplast genes ycf3 and ycf4 from the green alga Chlamydomonas reinhardtii have been characterized. The deduced amino acid sequences of Ycf4 (197 residues) and Ycf3 (172 residues) display 41-52% and 64-78% sequence identity, respectively, with their homologues from algae, land plants and cyanobacteria. In C.reinhardtii, ycf4 and ycf3 are co-transcribed as members of the rps9-ycf4-ycf3-rps18 polycistronic transcriptional unit into RNAs of 8.0 kb and 3.0 kb corresponding to the entire unit and to rps9-ycf4-ycf3, respectively. Using biolistic transformation, ycf4 and ycf3 were disrupted with a chloroplast selectable marker cassette. Transformants lacking ycf4 or ycf3 were unable to grow photoautotrophically and were deficient in photosystem I activity. Western blot analysis showed that the photosystem I (PSI) complex does not accumulate stably in thylakoid membranes of these transformants. Ycf4 and Ycf3 were localized on thylakoid membranes but not stably associated with the PSI complex and accumulated to wild-type levels in mutants lacking PSI. RNA blot hybridizations showed that transcripts of psaA, psaB and psaC accumulate normally in these mutants and use of chimeric reporter genes revealed that Ycf3 is not required for initiation of translation of psaA and psaB mRNA. Our results indicate that Ycf3 and Ycf4 are required for stable accumulation of the PSI complex.

KW - C. reinhardtii

KW - Chloroplast genes

KW - Open reading frame

KW - Photosystem I complex

KW - Thylakoid membrane

UR - http://www.scopus.com/inward/record.url?scp=0030664113&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030664113&partnerID=8YFLogxK

U2 - 10.1093/emboj/16.20.6095

DO - 10.1093/emboj/16.20.6095

M3 - Article

C2 - 9321389

AN - SCOPUS:0030664113

VL - 16

SP - 6095

EP - 6104

JO - EMBO Journal

JF - EMBO Journal

SN - 0261-4189

IS - 20

ER -