The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic

Research output: Contribution to journalArticle

117 Citations (Scopus)

Abstract

Nodulin-26-like intrinsic proteins (NIPs) of the aquaporin family are involved in the transport of diverse solutes, but the mechanisms controlling the selectivity of transport substrates are poorly understood. The purpose of this study was to investigate how the aromatic/arginine (ar/R) selectivity filter influences the substrate selectivity of two NIP aquaporins; the silicic acid (Si) transporter OsLsi1 (OsNIP2;1) from rice and the boric acid (B) transporter AtNIP5;1 from Arabidopsis; both proteins are also permeable to arsenite. Native and site-directed mutagenized variants of the two genes were expressed in Xenopus oocytes and the transport activities for Si, B, arsenite, and water were assayed. Substitution of the amino acid at the ar/R second helix (H2) position of OsLsi1 did not affect the transport activities for Si, B, and arsenite, but that at the H5 position resulted in a total loss of Si and B transport activities and a partial loss of arsenite transport activity. Conversely, changes of the AtNIP5;1 ar/R selectivity filter and the NPA motifs to the OsLsi1 type did not result in a gain of Si transport activity. B transport activity was partially lost in the H5 mutant but unaffected in the H2 mutant of AtNIP5;1. In contrast, both the single and double mutations at the H2 and/or H5 positions of AtNIP5;1 did not affect arsenite transport activity. The results reveal that the residue at the H5 position of the ar/R filter of both OsLsi1 and AtNIP5;1 plays a key role in the permeability to Si and B, but there is a relatively low selectivity for arsenite.

Original languageEnglish
Pages (from-to)4391-4398
Number of pages8
JournalJournal of Experimental Botany
Volume62
Issue number12
DOIs
Publication statusPublished - Aug 2011

Fingerprint

Silicic Acid
nodulins
arsenites
silicic acid
Aquaporins
Boron
aquaporins
Arsenic
Silicon
silicon
arsenic
boron
arginine
aromatic compounds
Arginine
Proteins
proteins
transporters
Aromatic Amino Acids
mutants

Keywords

  • Arsenic
  • boron
  • NIP aquaporins
  • selectivity
  • silicon
  • substrate

ASJC Scopus subject areas

  • Plant Science
  • Physiology

Cite this

@article{1c080f8552ac4da9a6ff2ac82e7c972e,
title = "The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic",
abstract = "Nodulin-26-like intrinsic proteins (NIPs) of the aquaporin family are involved in the transport of diverse solutes, but the mechanisms controlling the selectivity of transport substrates are poorly understood. The purpose of this study was to investigate how the aromatic/arginine (ar/R) selectivity filter influences the substrate selectivity of two NIP aquaporins; the silicic acid (Si) transporter OsLsi1 (OsNIP2;1) from rice and the boric acid (B) transporter AtNIP5;1 from Arabidopsis; both proteins are also permeable to arsenite. Native and site-directed mutagenized variants of the two genes were expressed in Xenopus oocytes and the transport activities for Si, B, arsenite, and water were assayed. Substitution of the amino acid at the ar/R second helix (H2) position of OsLsi1 did not affect the transport activities for Si, B, and arsenite, but that at the H5 position resulted in a total loss of Si and B transport activities and a partial loss of arsenite transport activity. Conversely, changes of the AtNIP5;1 ar/R selectivity filter and the NPA motifs to the OsLsi1 type did not result in a gain of Si transport activity. B transport activity was partially lost in the H5 mutant but unaffected in the H2 mutant of AtNIP5;1. In contrast, both the single and double mutations at the H2 and/or H5 positions of AtNIP5;1 did not affect arsenite transport activity. The results reveal that the residue at the H5 position of the ar/R filter of both OsLsi1 and AtNIP5;1 plays a key role in the permeability to Si and B, but there is a relatively low selectivity for arsenite.",
keywords = "Arsenic, boron, NIP aquaporins, selectivity, silicon, substrate",
author = "Namiki Mitani and Naoki Yamaji and Zhao, {Fang Jie} and Ma, {Jian Feng}",
year = "2011",
month = "8",
doi = "10.1093/jxb/err158",
language = "English",
volume = "62",
pages = "4391--4398",
journal = "Journal of Experimental Botany",
issn = "0022-0957",
publisher = "Oxford University Press",
number = "12",

}

TY - JOUR

T1 - The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic

AU - Mitani, Namiki

AU - Yamaji, Naoki

AU - Zhao, Fang Jie

AU - Ma, Jian Feng

PY - 2011/8

Y1 - 2011/8

N2 - Nodulin-26-like intrinsic proteins (NIPs) of the aquaporin family are involved in the transport of diverse solutes, but the mechanisms controlling the selectivity of transport substrates are poorly understood. The purpose of this study was to investigate how the aromatic/arginine (ar/R) selectivity filter influences the substrate selectivity of two NIP aquaporins; the silicic acid (Si) transporter OsLsi1 (OsNIP2;1) from rice and the boric acid (B) transporter AtNIP5;1 from Arabidopsis; both proteins are also permeable to arsenite. Native and site-directed mutagenized variants of the two genes were expressed in Xenopus oocytes and the transport activities for Si, B, arsenite, and water were assayed. Substitution of the amino acid at the ar/R second helix (H2) position of OsLsi1 did not affect the transport activities for Si, B, and arsenite, but that at the H5 position resulted in a total loss of Si and B transport activities and a partial loss of arsenite transport activity. Conversely, changes of the AtNIP5;1 ar/R selectivity filter and the NPA motifs to the OsLsi1 type did not result in a gain of Si transport activity. B transport activity was partially lost in the H5 mutant but unaffected in the H2 mutant of AtNIP5;1. In contrast, both the single and double mutations at the H2 and/or H5 positions of AtNIP5;1 did not affect arsenite transport activity. The results reveal that the residue at the H5 position of the ar/R filter of both OsLsi1 and AtNIP5;1 plays a key role in the permeability to Si and B, but there is a relatively low selectivity for arsenite.

AB - Nodulin-26-like intrinsic proteins (NIPs) of the aquaporin family are involved in the transport of diverse solutes, but the mechanisms controlling the selectivity of transport substrates are poorly understood. The purpose of this study was to investigate how the aromatic/arginine (ar/R) selectivity filter influences the substrate selectivity of two NIP aquaporins; the silicic acid (Si) transporter OsLsi1 (OsNIP2;1) from rice and the boric acid (B) transporter AtNIP5;1 from Arabidopsis; both proteins are also permeable to arsenite. Native and site-directed mutagenized variants of the two genes were expressed in Xenopus oocytes and the transport activities for Si, B, arsenite, and water were assayed. Substitution of the amino acid at the ar/R second helix (H2) position of OsLsi1 did not affect the transport activities for Si, B, and arsenite, but that at the H5 position resulted in a total loss of Si and B transport activities and a partial loss of arsenite transport activity. Conversely, changes of the AtNIP5;1 ar/R selectivity filter and the NPA motifs to the OsLsi1 type did not result in a gain of Si transport activity. B transport activity was partially lost in the H5 mutant but unaffected in the H2 mutant of AtNIP5;1. In contrast, both the single and double mutations at the H2 and/or H5 positions of AtNIP5;1 did not affect arsenite transport activity. The results reveal that the residue at the H5 position of the ar/R filter of both OsLsi1 and AtNIP5;1 plays a key role in the permeability to Si and B, but there is a relatively low selectivity for arsenite.

KW - Arsenic

KW - boron

KW - NIP aquaporins

KW - selectivity

KW - silicon

KW - substrate

UR - http://www.scopus.com/inward/record.url?scp=80051768906&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80051768906&partnerID=8YFLogxK

U2 - 10.1093/jxb/err158

DO - 10.1093/jxb/err158

M3 - Article

VL - 62

SP - 4391

EP - 4398

JO - Journal of Experimental Botany

JF - Journal of Experimental Botany

SN - 0022-0957

IS - 12

ER -