The alteration of a mechanical property of bone cells during the process of changing from osteoblasts to osteocytes

Yasuyo Sugawara, Ryoko Ando, Hiroshi Kamioka, Yoshihito Ishihara, Sakhr A. Murshid, Ken Hashimoto, Noriyuki Kataoka, Katsuhiko Tsujioka, Fumihiko Kajiya, Takashi Yamashiro, Teruko Takano-Yamamoto

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

Osteocytes acquire their stellate shape during the process of changing from osteoblasts in bone. Throughout this process, dynamic cytoskeletal changes occur. In general, changes of the cytoskeleton affect cellular mechanical properties. Mechanical properties of living cells are connected with their biological functions and physiological processes. In this study, we for the first time analyzed elastic modulus, a mechanical property of bone cells. Bone cells in embryonic chick calvariae and in isolated culture were identified using fluorescently labeled phalloidin and OB7.3, a chick osteocyte-specific monoclonal antibody, and then observed by confocal laser scanning microscopy. The elastic modulus of living cells was analyzed with atomic force microscopy. To examine the consequences of focal adhesion formation on the elastic modulus, cells were pretreated with GRGDS and GRGES, and then the elastic modulus of the cells was analyzed. Focal adhesions in the cells were visualized by immunofluorescence of vinculin. From fluorescence images, we could distinguish osteoblasts, osteoid osteocytes and mature osteocytes both in vivo and in vitro. The elastic modulus of peripheral regions of cells in all three populations was significantly higher than in their nuclear regions. The elastic modulus of the peripheral region of osteoblasts was 12053 ± 934 Pa, that of osteoid osteocytes was 7971 ± 422 Pa and that of mature osteocytes was 4471 ± 198 Pa. These results suggest that the level of elastic modulus of bone cells was proportional to the stage of changing from osteoblasts to osteocytes. The focal adhesion area of osteoblasts was significantly higher than that of osteocytes. The focal adhesion area of osteoblasts was decreased after treatment with GRGDS, however, that of osteocytes was not. The elastic modulus of osteoblasts and osteoid osteocytes were decreased after treatment with GRGDS. However, that of mature osteocytes was not changed. There were dynamic changes in the mechanical property of elastic modulus and in focal adhesions of bone cells.

Original languageEnglish
Pages (from-to)19-24
Number of pages6
JournalBone
Volume43
Issue number1
DOIs
Publication statusPublished - Jul 1 2008

Keywords

  • Elastic modulus
  • Focal adhesion
  • Mature osteocytes
  • Osteoblasts
  • Osteoid osteocytes

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Physiology
  • Histology

Fingerprint Dive into the research topics of 'The alteration of a mechanical property of bone cells during the process of changing from osteoblasts to osteocytes'. Together they form a unique fingerprint.

Cite this