Testing magnetic interference between TES detectors and the telescope environment for future CMB satellite missions

Tommaso Ghigna, Thuong D. Hoang, Takashi Hasebe, Yurika Hoshino, Nobuhiko Katayama, Kunimoto Komatsu, Adrian Lee, Tomotake Matsumura, Yuki Sakurai, Shinya Sugiyama, Aritoki Suzuki, Christopher Raum, Ryota Takaku, Benjamin Westbrook

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The two most common components of several upcoming CMB experiments are large arrays of superconductive TES (Transition-Edge Sensor) detectors and polarization modulator units, e.g. continuously-rotating Half-Wave Plates (HWP). A high detector count is necessary to increase the instrument raw sensitivity, however past experiments have shown that systematic effects are becoming one of the main limiting factors to reach the sensitivity required to detect primordial B-modes. Therefore, polarization modulators have become popular in recent years to mitigate several systematic effects. Polarization modulators based on HWP technologies require a rotating mechanism to spin the plate and modulate the incoming polarized signal. In order to minimize heat dissipation from the rotating mechanism, which is a stringent requirement particularly for a space mission like LiteBIRD, we can employ a superconductive magnetic bearing to levitate the rotor and achieve contactless rotation. A disadvantage of this technique is the associated magnetic fields generated by those systems. In this paper we investigate the effects on a TES detector prototype and find no detectable Tc variations due to an applied constant (DC) magnetic field, and a non-zero TES response to varying (AC) magnetic fields. We quantify a worst-case TES responsivity to the applied AC magnetic field of ∼105 pA/G, and give a preliminary interpretation of the pick-up mechanism.

Original languageEnglish
Title of host publicationMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI
EditorsJonas Zmuidzinas, Jian-Rong Gao
PublisherSPIE
ISBN (Electronic)9781510653610
DOIs
Publication statusPublished - 2022
EventMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI 2022 - Montreal, Canada
Duration: Jul 17 2022Jul 22 2022

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12190
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI 2022
Country/TerritoryCanada
CityMontreal
Period7/17/227/22/22

Keywords

  • Bolometer
  • CMB
  • Half-Wave Plate
  • Polarization Modulator
  • Transition Edge Sensor

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Testing magnetic interference between TES detectors and the telescope environment for future CMB satellite missions'. Together they form a unique fingerprint.

Cite this