Systemic Study of Orbital and Spin Nematicity in NaFe1−xCoxAs by NMR

Rui Zhou, Guo qing Zheng

Research output: Contribution to journalArticlepeer-review


Nematic order, a self-organized state with rotational symmetry broken, has been observed in both copper-oxide and iron-pnictide high temperature superconductors. However, its origin is still a mystery in the iron pnictides although it is considered as a key to understand the mechanism of superconductivity. Here, we report a systemic nuclear magnetic resonance (NMR) study on NaFe1−xCoxAs (0 ≤x ≤ 0.042) that an orbital order, accompanied by an instant spin nematicity, occurs at at a temperature T far above structural transition temperature Ts in the tetragonal phase. We show that the observed NMR spectra splitting and its evolution is due to an incommensurate orbital order that sets in below T and becomes commensurate below Ts. We show that the electric field gradient asymmetry parameter is a good measure for the orbital order parameter which undergoes a Landau-like 2nd-order phase transition. We further show that the spin nematicity is well accounted for by the observed orbital order.

Original languageEnglish
Pages (from-to)857-863
Number of pages7
JournalJournal of Superconductivity and Novel Magnetism
Issue number4
Publication statusPublished - Apr 1 2017


  • Iron pnictides
  • Nematic order
  • Nuclear magnetic resonance

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Systemic Study of Orbital and Spin Nematicity in NaFe1−xCoxAs by NMR'. Together they form a unique fingerprint.

Cite this