Synthesis and preliminary evaluation of neoglycopolymers carrying multivalent N-glycopeptide units

Naoto Takeda, Megumi Maeda, Satsuki Itano, Miho Takase, Mariko Kimura, Yoshinobu Kimura

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

In the present study, for the discovery of uncharacterized glycan-binding receptors or lectin-like receptors in plants, we developed neoglycopolymers to which three types of N-glycopeptides are conjugated; the first with plant complex type N-glycan (M3FX), the second with high-mannose type N-glycan (M8), and the third with animal complex type N-glycan (NeuAc2Gal2GN2M3). Three types of Asn-oligosaccharide (Asn-M3FX, Asn-M8, or Asn-NeuAc2Gal2GN2M3) were prepared from storage glycoproteins of Ginkgo biloba seeds, Vigna angularis seeds, and egg yolk glycopeptides from actinase digests of each glycoproteins or glycopeptide. Neoglycopolymers were synthesized such that the α-amino groups of Asn-oligosaccharide were coupled to the carboxyl groups of poly-γ-L-glutamic acid (γ-L-PGA) with 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride n-hydrate (DMT-MM). The resulting neoglycopolymers were purified through a combination of gel-filtration and reverse-phase HPLC. The incorporation of N-glycans into γ-L-PGA (mol%) was estimated through amino acid composition analysis after acid hydrolysis. The incorporation rates of Asn-M3FX, Asn-M8, and Asn-NeuAc2Gal2GN2M3 into γ-L-PGA were 15.4%, 8.6%, and 11.1%, indicating that nearly 890, 500, and 640 molecules of N-glycans were conjugated with γ-L-PGA, respectively. Furthermore, we confirmed that the neoglycopolymer carrying the multivalent high-mannose type N-glycans is a useful tool for rapid purification of mannose-binding protein, Concanavalin A, from jack bean extract.

Original languageEnglish
JournalInternational Journal of Biological Macromolecules
DOIs
Publication statusAccepted/In press - Jan 1 2019

Fingerprint

Glycopeptides
Polysaccharides
Oligosaccharides
Glycoproteins
Prostaglandins A
Seed
Jacks
Acids
Hydrates
Purification
Mannose
Amino acids
Hydrolysis
Animals
Gels
Seeds
Mitogen Receptors
Molecules
Mannose-Binding Lectin
Ginkgo biloba

ASJC Scopus subject areas

  • Structural Biology
  • Biochemistry
  • Molecular Biology
  • Economics and Econometrics
  • Energy(all)

Cite this

Synthesis and preliminary evaluation of neoglycopolymers carrying multivalent N-glycopeptide units. / Takeda, Naoto; Maeda, Megumi; Itano, Satsuki; Takase, Miho; Kimura, Mariko; Kimura, Yoshinobu.

In: International Journal of Biological Macromolecules, 01.01.2019.

Research output: Contribution to journalArticle

@article{aba07d00f497492e8f5f252ecf021479,
title = "Synthesis and preliminary evaluation of neoglycopolymers carrying multivalent N-glycopeptide units",
abstract = "In the present study, for the discovery of uncharacterized glycan-binding receptors or lectin-like receptors in plants, we developed neoglycopolymers to which three types of N-glycopeptides are conjugated; the first with plant complex type N-glycan (M3FX), the second with high-mannose type N-glycan (M8), and the third with animal complex type N-glycan (NeuAc2Gal2GN2M3). Three types of Asn-oligosaccharide (Asn-M3FX, Asn-M8, or Asn-NeuAc2Gal2GN2M3) were prepared from storage glycoproteins of Ginkgo biloba seeds, Vigna angularis seeds, and egg yolk glycopeptides from actinase digests of each glycoproteins or glycopeptide. Neoglycopolymers were synthesized such that the α-amino groups of Asn-oligosaccharide were coupled to the carboxyl groups of poly-γ-L-glutamic acid (γ-L-PGA) with 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride n-hydrate (DMT-MM). The resulting neoglycopolymers were purified through a combination of gel-filtration and reverse-phase HPLC. The incorporation of N-glycans into γ-L-PGA (mol{\%}) was estimated through amino acid composition analysis after acid hydrolysis. The incorporation rates of Asn-M3FX, Asn-M8, and Asn-NeuAc2Gal2GN2M3 into γ-L-PGA were 15.4{\%}, 8.6{\%}, and 11.1{\%}, indicating that nearly 890, 500, and 640 molecules of N-glycans were conjugated with γ-L-PGA, respectively. Furthermore, we confirmed that the neoglycopolymer carrying the multivalent high-mannose type N-glycans is a useful tool for rapid purification of mannose-binding protein, Concanavalin A, from jack bean extract.",
author = "Naoto Takeda and Megumi Maeda and Satsuki Itano and Miho Takase and Mariko Kimura and Yoshinobu Kimura",
year = "2019",
month = "1",
day = "1",
doi = "10.1016/j.ijbiomac.2019.09.255",
language = "English",
journal = "International Journal of Biological Macromolecules",
issn = "0141-8130",
publisher = "Elsevier",

}

TY - JOUR

T1 - Synthesis and preliminary evaluation of neoglycopolymers carrying multivalent N-glycopeptide units

AU - Takeda, Naoto

AU - Maeda, Megumi

AU - Itano, Satsuki

AU - Takase, Miho

AU - Kimura, Mariko

AU - Kimura, Yoshinobu

PY - 2019/1/1

Y1 - 2019/1/1

N2 - In the present study, for the discovery of uncharacterized glycan-binding receptors or lectin-like receptors in plants, we developed neoglycopolymers to which three types of N-glycopeptides are conjugated; the first with plant complex type N-glycan (M3FX), the second with high-mannose type N-glycan (M8), and the third with animal complex type N-glycan (NeuAc2Gal2GN2M3). Three types of Asn-oligosaccharide (Asn-M3FX, Asn-M8, or Asn-NeuAc2Gal2GN2M3) were prepared from storage glycoproteins of Ginkgo biloba seeds, Vigna angularis seeds, and egg yolk glycopeptides from actinase digests of each glycoproteins or glycopeptide. Neoglycopolymers were synthesized such that the α-amino groups of Asn-oligosaccharide were coupled to the carboxyl groups of poly-γ-L-glutamic acid (γ-L-PGA) with 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride n-hydrate (DMT-MM). The resulting neoglycopolymers were purified through a combination of gel-filtration and reverse-phase HPLC. The incorporation of N-glycans into γ-L-PGA (mol%) was estimated through amino acid composition analysis after acid hydrolysis. The incorporation rates of Asn-M3FX, Asn-M8, and Asn-NeuAc2Gal2GN2M3 into γ-L-PGA were 15.4%, 8.6%, and 11.1%, indicating that nearly 890, 500, and 640 molecules of N-glycans were conjugated with γ-L-PGA, respectively. Furthermore, we confirmed that the neoglycopolymer carrying the multivalent high-mannose type N-glycans is a useful tool for rapid purification of mannose-binding protein, Concanavalin A, from jack bean extract.

AB - In the present study, for the discovery of uncharacterized glycan-binding receptors or lectin-like receptors in plants, we developed neoglycopolymers to which three types of N-glycopeptides are conjugated; the first with plant complex type N-glycan (M3FX), the second with high-mannose type N-glycan (M8), and the third with animal complex type N-glycan (NeuAc2Gal2GN2M3). Three types of Asn-oligosaccharide (Asn-M3FX, Asn-M8, or Asn-NeuAc2Gal2GN2M3) were prepared from storage glycoproteins of Ginkgo biloba seeds, Vigna angularis seeds, and egg yolk glycopeptides from actinase digests of each glycoproteins or glycopeptide. Neoglycopolymers were synthesized such that the α-amino groups of Asn-oligosaccharide were coupled to the carboxyl groups of poly-γ-L-glutamic acid (γ-L-PGA) with 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride n-hydrate (DMT-MM). The resulting neoglycopolymers were purified through a combination of gel-filtration and reverse-phase HPLC. The incorporation of N-glycans into γ-L-PGA (mol%) was estimated through amino acid composition analysis after acid hydrolysis. The incorporation rates of Asn-M3FX, Asn-M8, and Asn-NeuAc2Gal2GN2M3 into γ-L-PGA were 15.4%, 8.6%, and 11.1%, indicating that nearly 890, 500, and 640 molecules of N-glycans were conjugated with γ-L-PGA, respectively. Furthermore, we confirmed that the neoglycopolymer carrying the multivalent high-mannose type N-glycans is a useful tool for rapid purification of mannose-binding protein, Concanavalin A, from jack bean extract.

UR - http://www.scopus.com/inward/record.url?scp=85076850524&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85076850524&partnerID=8YFLogxK

U2 - 10.1016/j.ijbiomac.2019.09.255

DO - 10.1016/j.ijbiomac.2019.09.255

M3 - Article

C2 - 31751705

AN - SCOPUS:85076850524

JO - International Journal of Biological Macromolecules

JF - International Journal of Biological Macromolecules

SN - 0141-8130

ER -