Syntectonic infiltration by meteoric waters along the Sevier thrust front, southwest Montana

A. C. Rygel, D. J. Anastasio, G. E. Bebout

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


Structural, petrographic, and isotopic data for calcite veins and carbonate host-rocks from the Sevier thrust front of SW Montana record syntectonic infiltration by H2O-rich fluids with meteoric oxygen isotope compositions. Multiple generations of calcite veins record protracted fluid flow associated with regional Cretaceous contraction and subsequent Eocene extension. Vein mineralization occurred during single and multiple mineralization events, at times under elevated fluid pressures. Low salinity (Tm = -0.6°C to +3.6°C, as NaCl equivalent salinities) and low temperature (estimated 50-80°C for Cretaceous veins, 60-80°C for Eocene veins) fluids interacted with wall-rock carbonates at shallow depths (3-4 km in the Cretaceous, 2-3 km in the Eocene) during deformation. Shear and extensional veins of all ages show significant intra- and inter-vein variation in δ18O and δ13C. Carbonate host-rocks have a mean δ18CV-SMOW value of +22.2 ± 3‰ (1σ), and both the Cretaceous veins and Eocene veins have δ18O ranging from values similar to those of the host-rocks to as low as +5 to +6‰. The variation in vein δ13C V-PDB of -1 to approximately +6‰ is attributed to original stratigraphic variation and C isotope exchange with hydrocarbons. Using the estimated temperature ranges for vein formation, fluid (as H2O) δ18O calculated from Cretaceous vein compositions for the Tendoy and Four Eyes Canyon thrust sheets are -18.5 to -12.5‰. For the Eocene veins within the Four Eyes Canyon thrust sheet, calculated H2O δ18O values are -16.3 to -13.5‰. Fluid-rock exchange was localized along fractures and was likely coincident with hydrocarbon migration. Paleo-temperature determinations and stable isotope data for veins are consistent with the infiltration of the foreland thrust sheets by meteoric waters, throughout both Sevier orogenesis and subsequent orogenic collapse. The cessation of the Sevier orogeny was coincident with an evolving paleogeographic landscape associated with the retreat of the Western Interior Seaway and the emergence of the thrust front and foreland basin. Meteoric waters penetrated the foreland carbonate thrust sheets of the Sevier orogeny utilizing an evolving mesoscopic fracture network, which was kinematically related to regional thrust structures. The uncertainty in the temperature estimates for the Cretaceous and Eocene vein formation prevents a more detailed assessment of the temporal evolution in meteoric water δ18O related to changing paleogeography. Meteoric water-influenced δ18O values calculated here for Cretaceous to Eocene vein-forming fluids are similar to those previously proposed for surface waters in the Eocene, and those observed for modern-day precipitation, in this part of the Idaho-Montana thrust belt.

Original languageEnglish
Pages (from-to)288-301
Number of pages14
Issue number4
Publication statusPublished - Nov 2006
Externally publishedYes


  • Montana
  • Oxygen isotope
  • Paleohydrology
  • Sevier orogeny
  • Thrust belt
  • Veins

ASJC Scopus subject areas

  • Earth and Planetary Sciences(all)


Dive into the research topics of 'Syntectonic infiltration by meteoric waters along the Sevier thrust front, southwest Montana'. Together they form a unique fingerprint.

Cite this