TY - JOUR
T1 - Suppression of matrix effects in ICP-MS by high power operation of ICP
T2 - Application to precise determination of Rb, Sr, Y, Cs, Ba, REE, Pb, Th and U at ng g-1 levels in milligram silicate samples
AU - Makishima, Akio
AU - Nakamura, Eizo
PY - 1997/12/1
Y1 - 1997/12/1
N2 - We found that the suppression of signals for 88Sr, 140Ce and 238U in rock solution caused by rock matrix in ICP-MS (matrix effects) was reduced at high power operation (1.7 kW) of the ICP. To make the signal suppression by the matrix negligible, minimum dilution factors (DF) of the rock solution for Sr, Ce and U were 600, 400 and 113 at 1.1, 1.4 and 1.7 kW, respectively. Based on these findings, a rapid and precise determination method for Rb, Sr, Y, Cs, Ba, REE, Pb, Th and U using Fl (flow injection)-ICP-MS was developed. The amount of the sample solution required for FI-ICP-MS was 0.2 ml, so that 1.8 mg sample was sufficient for analysis with a detection limit of several ng g-1. Using this method, we determined the trace element concentrations in the USGS rock reference materials, DTS-1, PCC-1, BCR-1 and AGV-1, and the GSJ rock reference materials, JP-1, JB-1, -2, -3, JA-1, -2 and -3. The reproducibilities (RSD%) in replicate analyses (n=5) of BCR-1, AGV-1, JB-1, -2, -3, JA-1, -2, and -3 were < 6%, and typically 2.5%. The difference between the average concentrations of this study for BCR-1 and those of the reference values were < 2%. Therefore, it was concluded that the method can give reliable data for trace elements in silicate rocks.
AB - We found that the suppression of signals for 88Sr, 140Ce and 238U in rock solution caused by rock matrix in ICP-MS (matrix effects) was reduced at high power operation (1.7 kW) of the ICP. To make the signal suppression by the matrix negligible, minimum dilution factors (DF) of the rock solution for Sr, Ce and U were 600, 400 and 113 at 1.1, 1.4 and 1.7 kW, respectively. Based on these findings, a rapid and precise determination method for Rb, Sr, Y, Cs, Ba, REE, Pb, Th and U using Fl (flow injection)-ICP-MS was developed. The amount of the sample solution required for FI-ICP-MS was 0.2 ml, so that 1.8 mg sample was sufficient for analysis with a detection limit of several ng g-1. Using this method, we determined the trace element concentrations in the USGS rock reference materials, DTS-1, PCC-1, BCR-1 and AGV-1, and the GSJ rock reference materials, JP-1, JB-1, -2, -3, JA-1, -2 and -3. The reproducibilities (RSD%) in replicate analyses (n=5) of BCR-1, AGV-1, JB-1, -2, -3, JA-1, -2, and -3 were < 6%, and typically 2.5%. The difference between the average concentrations of this study for BCR-1 and those of the reference values were < 2%. Therefore, it was concluded that the method can give reliable data for trace elements in silicate rocks.
UR - http://www.scopus.com/inward/record.url?scp=0000119937&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000119937&partnerID=8YFLogxK
U2 - 10.1111/j.1751-908X.1997.tb00678.x
DO - 10.1111/j.1751-908X.1997.tb00678.x
M3 - Article
AN - SCOPUS:0000119937
SN - 0150-5505
VL - 21
SP - 307
EP - 319
JO - Geostandards and Geoanalytical Research
JF - Geostandards and Geoanalytical Research
IS - 2
ER -