Success in making Zn+ from atomic Zn0 encapsulated in an MFI-Type zeolite with UV light irradiation

Akira Oda, Hiroe Torigoe, Atsushi Itadani, Takahiro Ohkubo, Takashi Yumura, Hisayoshi Kobayashi, Yasushige Kuroda

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

For the first time, the paramagnetic Zn+ species was prepared successfully by the excitation with ultraviolet light in the region ascribed to the absorption band resulting from the 4s-4p transition of an atomic Zn 0 species encapsulated in an MFI-type zeolite. The formed species gives a specific electron spin resonance band at g = 1.998 and also peculiar absorption bands around 38,000 and 32,500 cm-1 which originate from 4s-4p transitions due to the Zn+ species with paramagnetic nature that is formed in MFI. The transformation process (Zn0 → Zn +) was explained by considering the mechanism via the excited triplet state (3P) caused by the intersystem crossing from the excited singlet state (1P) produced through the excitation of the 4s-4p transition of an atomic Zn0 species grafted in MFI by UV light. The transformation process was well reproduced with the aid of a density functional theory calculation. The thus-formed Zn+ species which has the doublet spin state exhibits characteristic reaction nature at room temperature for an O2 molecule having a triplet spin state in the ground state, forming an η1 type of Zn2+-O2- species. These features clearly indicate the peculiar reactivity of Zn+ in MFI, whereas Zn0-(H+)2MFI hardly reacts with O2 at room temperature. The bonding nature of [Zn2+-O 2-] species was also evidenced by ESR measurements and was also discussed on the basis of the results obtained through DFT calculations.

Original languageEnglish
Pages (from-to)18481-18489
Number of pages9
JournalJournal of the American Chemical Society
Volume135
Issue number49
DOIs
Publication statusPublished - Dec 11 2013

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Success in making Zn<sup>+</sup> from atomic Zn<sup>0</sup> encapsulated in an MFI-Type zeolite with UV light irradiation'. Together they form a unique fingerprint.

Cite this