Submicron-scale condensation on hydrophobic and hydrophilic surfaces

Yutaka Yamada, Tatsuya Ikuta, Takashi Nishiyama, Koji Takahashi, Yasuyuki Takata

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Condensation heat transfer is a widely-used technique for industrial applications represented by heat exchanger because of its high heat transfer coefficient. To enhance its performance, a suitable surface is required, where both condensation and droplet removal smoothly occur. In this study, we compared wettability of a graphene surface and an amorphous carbon surface. The result shows that an amorphous carbon surface is more hydrophilic. Then we prepared a graphite surface which has nanoscale hydrophilic regions in large hydrophobic area. We observed the submicron-scale droplet condensation occurs preferentially on the hydrophilic graphite step by using environmental scanning electron microscope (ESEM).

Original languageEnglish
Title of host publicationSafety, Reliability and Risk; Virtual Podium (Posters)
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791856444
DOIs
Publication statusPublished - Jan 1 2013
Externally publishedYes
EventASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013 - San Diego, CA, United States
Duration: Nov 15 2013Nov 21 2013

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume15

Other

OtherASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013
CountryUnited States
CitySan Diego, CA
Period11/15/1311/21/13

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Submicron-scale condensation on hydrophobic and hydrophilic surfaces'. Together they form a unique fingerprint.

  • Cite this

    Yamada, Y., Ikuta, T., Nishiyama, T., Takahashi, K., & Takata, Y. (2013). Submicron-scale condensation on hydrophobic and hydrophilic surfaces. In Safety, Reliability and Risk; Virtual Podium (Posters) (ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 15). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/IMECE2013-66186